readenglishbook.com » History » Great Astronomers, Sir Robert Stawell Ball [portable ebook reader txt] 📗

Book online «Great Astronomers, Sir Robert Stawell Ball [portable ebook reader txt] 📗». Author Sir Robert Stawell Ball



1 ... 20 21 22 23 24 25 26 27 28 ... 47
Go to page:
significance of this plain, it should be observed that the determination of the sun's parallax is equivalent to the determination of the distance from the earth to the sun. At the time of which we are now writing, this very important unit of celestial measurement was only very imperfectly known, and the observations of Pound and Bradley may be interpreted to mean that, from their observations, they had come to the conclusion that the distance from the earth to the sun must be more than 94 millions of miles, and less than 125 millions. We now, of course, know that they were not exactly right, for the true distance of the sun is about 93 millions of miles. We cannot, however, but think that it was a very remarkable approach for the veteran astronomer and his brilliant nephew to make towards the determination of a magnitude which did not become accurately known till fifty years later.

Among the earliest parts of astronomical work to which Bradley's attention was directed, were the eclipses of Jupiter's satellites. These phenomena are specially attractive inasmuch as they can be so readily observed, and Bradley found it extremely interesting to calculate the times at which the eclipses should take place, and then to compare his observations with the predicted times. From the success that he met with in this work, and from his other labours, Bradley's reputation as an astronomer increased so greatly that on November the 6th, 1718, he was elected a Fellow of the Royal Society.

Up to this time the astronomical investigations of Bradley had been more those of an amateur than of a professional astronomer, and as it did not at first seem likely that scientific work would lead to any permanent provision, it became necessary for the youthful astronomer to choose a profession. It had been all along intended that he should enter the Church, though for some reason which is not told us, he did not take orders as soon as his age would have entitled him to do so. In 1719, however, the Bishop of Hereford offered Bradley the Vicarage of Bridstow, near Ross, in Monmouthshire, and on July 25th, 1720, he having then taken priest's orders, was duly instituted in his vicarage. In the beginning of the next year, Bradley had some addition to his income from the proceeds of a Welsh living, which, being a sinecure, he was able to hold with his appointment at Bridstow. It appears, however, that his clerical occupations were not very exacting in their demands upon his time, for he was still able to pay long and often-repeated visits to his uncle at Wandsworth, who, being himself a clergyman, seems to have received occasional assistance in his ministerial duties from his astronomical nephew.

The time, however, soon arrived when Bradley was able to make a choice between continuing to exercise his profession as a divine, or devoting himself to a scientific career. The Savilian Professorship of Astronomy in the University of Oxford became vacant by the death of Dr. John Keill. The statutes forbade that the Savilian Professor should also hold a clerical appointment, and Mr. Pound would certainly have been elected to the professorship had he consented to surrender his preferments in the Church. But Pound was unwilling to sacrifice his clerical position, and though two or three other candidates appeared in the field, yet the talents of Bradley were so conspicuous that he was duly elected, his willingness to resign the clerical profession having been first ascertained.

There can be no doubt that, with such influential friends as Bradley possessed, he would have made great advances had he adhered to his profession as a divine. Bishop Hoadly, indeed, with other marks of favour, had already made the astronomer his chaplain. The engrossing nature of Bradley's interest in astronomy decided him, however, to sacrifice all other prospects in comparison with the opening afforded by the Savilian Professorship. It was not that Bradley found himself devoid of interest in clerical matters, but he felt that the true scope for such abilities as he possessed would be better found in the discharge of the scientific duties of the Oxford chair than in the spiritual charge of a parish. On April the 26th, 1722, Bradley read his inaugural lecture in that new position on which he was destined to confer such lustre.

It must, of course, be remembered that in those early days the art of constructing the astronomical telescope was very imperfectly understood. The only known method for getting over the peculiar difficulties presented in the construction of the refracting telescope, was to have it of the most portentous length. In fact, Bradley made several of his observations with an instrument of two hundred and twelve feet focus. In such a case, no tube could be used, and the object glass was merely fixed at the top of a high pole. Notwithstanding the inconvenience and awkwardness of such an instrument, Bradley by its means succeeded in making many careful measurements. He observed, for example, the transit of Mercury over the sun's disc, on October 9th, 1723; he also observed the dimensions of the planet Venus, while a comet which Halley discovered on October the 9th, 1723, was assiduously observed at Wanstead up to the middle of the ensuing month. The first of Bradley's remarkable contributions to the "Philosophical Transactions" relates to this comet, and the extraordinary amount of work that he went through in connection therewith may be seen from an examination of his book of Calculations which is still extant.

The time was now approaching when Bradley was to make the first of those two great discoveries by which his name has acquired a lustre that has placed him in the very foremost rank of astronomical discoverers. As has been often the case in the history of science, the first of these great successes was attained while he was pursuing a research intended for a wholly different purpose. It had long been recognised that as the earth describes a vast orbit, nearly two hundred million miles in diameter, in its annual journey round the sun, the apparent places of the stars should alter, to some extent, in correspondence with the changes in the earth's position. The nearer the star the greater the shift in its apparent place on the heavens, which must arise from the fact that it was seen from different positions in the earth's orbit. It had been pointed out that these apparent changes in the places of the stars, due to the movement of the earth, would provide the means of measuring the distances of the stars. As, however, these distances are enormously great in comparison with the orbit which the earth describes around the sun, the attempt to determine the distances of the stars by the shift in their positions had hitherto proved ineffectual. Bradley determined to enter on this research once again; he thought that by using instruments of greater power, and by making measurements of increased delicacy, he would be able to perceive and to measure displacements which had proved so small as to elude the skill of the other astronomers who had previously made efforts in the same direction. In order to simplify the investigation as much as possible, Bradley devoted his attention to one particular star, Beta Draconis, which happened to pass near his zenith. The object of choosing a star in this position was to avoid the difficulties which would be introduced by refraction had the star occupied any other place in the heavens than that directly overhead.

We are still able to identify the very spot on which the telescope stood which was used in this memorable research. It was erected at the house then occupied by Molyneux, on the western extremity of Kew Green. The focal length was 24 feet 3 inches, and the eye-glass was 3 and a half feet above the ground floor. The instrument was first set up on November 26th, 1725. If there had be any appreciable disturbance in the place of Beta Draconis in consequence of the movement of the earth around the sun, the star must appear to have the smallest latitude when in conjunction with the sun, and the greatest when in opposition. The star passed the meridian at noon in December, and its position was particularly noticed by Molyneux on the third of that month. Any perceptible displacement by parallax--for so the apparent change in position, due to the earth's motion, is called--would would have made the star shift towards the north. Bradley, however, when observing it on the 17th, was surprised to find that the apparent place of the star, so far from shifting towards the north, as they had perhaps hoped it would, was found to lie a little more to the south than when it was observed before. He took extreme care to be sure that there was no mistake in his observation, and, true astronomer as he was, he scrutinized with the utmost minuteness all the circumstances of the adjustment of his instruments. Still the star went to the south, and it continued so advancing in the same direction until the following March, by which time it had moved no less than twenty seconds south from the place which it occupied when the first observation was made. After a brief pause, in which no apparent movement was perceptible, the star by the middle of April appeared to be returning to the north. Early in June it reached the same distance from the zenith which it had in December. By September the star was as much as thirty-nine seconds more to the north than it had been in March, then it returned towards the south, regaining in December the same situation which it had occupied twelve months before.

This movement of the star being directly opposite to the movements which would have been the consequence of parallax, seemed to show that even if the star had any parallax its effects upon the apparent place were entirely masked by a much larger motion of a totally different description. Various attempts were made to account for the phenomenon, but they were not successful. Bradley accordingly determined to investigate the whole subject in a more thorough manner. One of his objects was to try whether the same movements which he had observed in one star were in any similar degree possessed by other stars. For this purpose he set up a new instrument at Wanstead, and there he commenced a most diligent scrutiny of the apparent places of several stars which passed at different distances from the zenith. He found in the course of this research that other stars exhibited movements of a similar description to those which had already proved so perplexing. For a long time the cause of these apparent movements seemed a mystery. At last, however, the explanation of these remarkable phenomena dawned upon him, and his great discovery was made.

One day when Bradley was out sailing he happened to remark that every time the boat was laid on a different tack the vane at the top of the boat's mast shifted a little, as if there had been a slight change in the direction of the wind. After he had noticed this three or four times he made a remark to the sailors to the effect that it was very strange the wind should always happen to change just at the moment when the boat was going about. The sailors, however, said there had been no change in the wind, but that the alteration in the vane
1 ... 20 21 22 23 24 25 26 27 28 ... 47
Go to page:

Free e-book «Great Astronomers, Sir Robert Stawell Ball [portable ebook reader txt] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment