The Science of Fingerprints, United States. Federal Bureau of Investigation [good books to read in english TXT] 📗
- Author: United States. Federal Bureau of Investigation
- Performer: -
Book online «The Science of Fingerprints, United States. Federal Bureau of Investigation [good books to read in english TXT] 📗». Author United States. Federal Bureau of Investigation
If the skin is intact on the finger and is not wrinkled, of course there is no problem and the usual method is employed to secure impressions.
Should wrinkles be present and the skin pliable, tissue builder is injected into the bulbs, which are then inked and printed.
In the event the wrinkles cannot be removed in this fashion, the pattern area is cut off and the excess flesh scraped out as before. While the scraping and cutting are being accomplished, the skin should be soaked and massaged in xylene to soften. The skin is then placed on the operator's finger, inked and printed. Should prints made in this manner be unsatisfactory, the next recourse is photography.
In some instances the fingers of burned bodies will be charred. Such cases require very careful handling as there is a probability of destroying or disturbing the ridge detail through mistreatment. In these instances the procedure is determined by the degree of charring. In extreme cases the only method of recording is by photographing, using side lighting to secure the proper contrast of ridges and depressions. Obviously, no attempt should be made to ink and roll as the pressure necessary to secure the prints would cause the skin to crumble.
In instances where the charring has not reached the extreme stage the procedures previously set forth should be applied; that is, treatment of the skin by cleaning, softening, inking and printing, or, finally, by photographing (fig. 400).
Fig. 400
[Fig. 400]
Water-soaked fingers
The third and final type of case which may confront the identification officer concerns the problem of maceration, that is, long immersion of the fingers in water.
One of the cardinal rules for securing legible impressions is that the fingers must be dry. Accordingly, in these cases it becomes a matter of drying the fingers in addition to contending with other difficulties. Usually the skin on the fingers absorbs water, swells and loosens from the flesh within a few hours after immersion.
If an examination discloses the skin to be water-soaked, wrinkled and pliable, but intact, the first step is to cleanse the skin carefully as previously described. Next, wipe the fingertip with alcohol, benzine or acetone, waiting a few seconds for it to dry. The skin is pulled or drawn tight across the pattern area so that a large wrinkle is formed on the back of the finger, then the bulb is inked and printed.
If the skin is broken and hanging loose, but its pattern area is intact, it should be removed from the finger, cleansed and placed in alcohol or benzine (not acetone) for about a minute, then stretched carefully over the operator's finger so as to remove any wrinkles. It may then be printed.
Sometimes the skin is intact on the finger but so wrinkled and hard that it is not possible to draw it tight for inking. In this case it may be advisable to inject tissue builder to round out the bulbs for inking and printing. Should this fail, the ridge detail is photographed on the finger; or the skin is cut off, flattened between two pieces of glass and then photographed. Here, again, it must be pointed out that when the ridge detail does not show on the surface of the outer skin the underside should be examined, for many times the detail can be seen clearly. Should this be true, of course, the underside is photographed.
In cases where it is noted that the outer skin is gone and the finger is not saturated with water, it is possible to dry the surface sufficiently for inking and printing purposes by rolling the finger on a blotter. If this fails, the finger is wiped off with a piece of cloth which has been saturated with alcohol, benzine or acetone, after which it may be inked and printed.
Drying the fingersIn many instances it will be found that the outer skin is gone and the fingers themselves are saturated with water. A quick method of drying out the fingers is to place them in full strength acetone for approximately 30 minutes. The fingers are then placed in xylene for about an hour or until the xylene has overcome the reaction of the acetone. After removal from the xylene the fingers should be placed on a blotter until the surface of the fingers appears dry. They are then ready to be inked and printed.
It will be noted in this procedure that when the fingers are removed from the acetone they dry and harden in a matter of seconds. The purpose of the xylene is to resoften the fingers. After this treatment, should the resulting inked impressions be unsuitable for classification purposes, the ridge detail should be photographed.
X-ray photographyThe use of X-ray photographs (radiography) has been advocated by some for purposes of recording the ridge details in decomposed, desiccated, or macerated cases. Briefly, the procedure involves the covering of the fingers with heavy salts such as bismuth or lead carbonate, in a thin, even film over the pattern area and then, by the use of the X-ray, reproducing the ridge detail. This procedure necessitates the use of X-ray equipment and a technician skilled in making radiographs. It is, therefore, an expensive operation. The results of the radiograph in no way compensate for the expense, time, and skill required inasmuch as in those cases where many wrinkles and creases appear in the fingers, especially desiccated specimens, the results have been very poor. In instances where there are no wrinkles or only a few, and where the creases are not too deep, the ridge detail is reproduced very well in the radiograph. In these cases, however, it is usually possible to secure impressions by inking and rolling in the regular way or, should this fail, ordinary photography will certainly give satisfactory results. For economical and practical purposes the use of the X-ray is not recommended.
General photographyIn the foregoing instances in which it has been impossible to obtain suitable inked impressions it will be noted that the last resort has always been photography. In all probability in advanced cases of decomposition, desiccation, and maceration it may not be possible to secure inked impressions which can be properly classified. Hence, it will be necessary to photograph the ridge detail. Accordingly, there are outlined below several methods of photographing the ridges which have been used with success.
In photographing the ridge detail on fingers it has been determined to be most practicable to photograph the finger natural, or 1/1, size inasmuch as comparisons will usually be made with inked impressions which are natural size. Any camera built or adjusted to taking 1/1 size pictures, and with which the lighting may be arranged to best advantage, may be used.
There is a wide choice of film which can be used for this purpose. The so-called soft films are all good for photographing ridge detail on fingers. Process film is not recommended inasmuch as the film presents too much of a contrast. Consequently, if it is used, some of the ridge detail will be lost, especially if wrinkles are present in the skin.
Lighting is accomplished by the use of gooseneck lamps, floodlights, or a spotlight. If a fingerprint camera is used, its lights may be sufficient.
The manner of lighting may be by direct light, side light, transmitted light or reflected light, depending upon the prevailing condition of the finger or skin.
Direct light is used in those cases in which the ridge detail is fairly clear and there are no wrinkles present; or, if wrinkles are present, they are not deep enough to interfere with photographing the ridges.
Side lighting is used when there are no wrinkles of any consequence and the ridge detail is clear but because of discoloration the ridges are not readily seen in the ground glass as there is lack of contrast between ridges and depressions. Accordingly, the lights, instead of being focused directly on the skin or finger, are placed to the side of the object so that the light is directed across the skin or finger, thus highlighting the ridges and shading the depressions.
In side lighting, two lights may be used. Better results are often obtained, however, by using only one light, such as a spotlight, the beam of which can be controlled to best advantage.
Transmitted light is used in cases in which the skin has peeled off or in which the dermis has been removed, cut, and scraped thin so that light will go through. The prepared skin is placed between two pieces of glass pressed together in order to flatten the skin or dermis and remove creases. By trimming some of the surplus skin or dermis, especially at the top, it may be more easily flattened. After the glass is properly mounted in front of the camera, the lights are placed behind it and light is directed through the skin. The ridge detail is brought into focus on the ground glass. Before the picture is actually taken it is suggested that the ground glass be checked by first using one light and then two lights to see which is more effective.
There will be instances in which the second layer of skin, cut and scraped thin enough to flatten out, fails when dry to have a sufficient contrast between ridges and depressions for purposes of photographing. The same piece of skin when soaked in xylene will show a marked contrast, which it loses on drying. This difficulty is overcome by photographing the skin while in solution, which can be done by placing the skin in a test tube or a small bottle of a size to keep the skin upright and the ridges toward the camera. The test tube or bottle is then filled with xylene.
If the skin is sufficiently thin, transmitted light may be used. Should it be found, however, that transmitted light is not effective, then direct light may be tried and the results checked in the ground glass (fig. 401).
Fig. 401
[Fig. 401]
When photographing a small curved surface such as a test tube, direct lighting will usually create a high light. If the high light as shown in the ground glass is over the ridge detail on the skin, a poor photograph will result. If the high light cannot be removed by rearranging the lights, then reflected light should be tried.
In order to effect reflected light a large piece of white paper, cardboard, or similar material is used. A hole is cut in the center of the paper or cardboard. This must be big enough for the camera lens to protrude through. The ends of the paper or board are curved toward the skin or finger to be photographed. The lamps which are to be used are placed facing the curved paper or cardboard in such fashion that the light will strike the paper or board and be reflected by the curved surface to the object.
The lamps should be close enough to the paper or board to give the
Comments (0)