A Short History of Astronomy, Arthur Berry [large screen ebook reader .TXT] 📗
- Author: Arthur Berry
- Performer: -
Book online «A Short History of Astronomy, Arthur Berry [large screen ebook reader .TXT] 📗». Author Arthur Berry
53. The history of Greek astronomy practically ceases with Ptolemy. The practice of observation died out so completely that only eight observations are known to have been made during the eight and a half centuries which separate him from Albategnius (chapter III., § 59). The only Greek writers after Ptolemy’s time are compilers and commentators, such as Theon (fl. A.D. 365), to none of whom original ideas of any importance can be attributed. The murder of his daughter Hypatia (A.D. 415), herself also a writer on astronomy, marks an epoch in the decay of the Alexandrine school; and the end came in A.D. 640, when Alexandria was captured by the Arabs.36
54. It remains to attempt to estimate briefly the value of the contributions to astronomy made by the Greeks and of their method of investigation. It is obviously unreasonable to expect to find a brief formula which will characterise the scientific attitude of a series of astronomers whose lives extend over a period of eight centuries; and it is futile to explain the inferiority of Greek astronomy to our own on some such ground as that they had not discovered the method of induction, that they were not careful enough to obtain facts, or even that their ideas were not clear. In habits of thought and scientific aims the contrast between Pythagoras and Hipparchus is probably greater than that between Hipparchus on the one hand and Coppernicus or even Newton on the other, while it is not unfair to say that the fanciful ideas which pervade the work of even so great a discoverer as Kepler (chapter VII., §§ 144, 151) place his scientific method in some respects behind that of his great Greek predecessor.
The Greeks inherited from their predecessors a number of observations, many of them executed with considerable accuracy, which were nearly sufficient for the requirements of practical life, but in the matter of astronomical theory and speculation, in which their best thinkers were very much more interested than in the detailed facts, they received virtually a blank sheet on which they had to write (at first with indifferent success) their speculative ideas. A considerable interval of time was obviously necessary to bridge over the gulf separating such data as the eclipse observations of the Chaldaeans from such ideas as the harmonical spheres of Pythagoras; and the necessary theoretical structure could not be erected without the use of mathematical methods which had gradually to be invented. That the Greeks, particularly in early times, paid little attention to making observations, is true enough, but it may fairly be doubted whether the collection of fresh material for observations would really have carried astronomy much beyond the point reached by the Chaldaean observers. When once speculative ideas, made definite by the aid of geometry, had been sufficiently developed to be capable of comparison with observation, rapid progress was made. The Greek astronomers of the scientific period, such as Aristarchus, Eratosthenes, and above all Hipparchus, appear moreover to have followed in their researches the method which has always been fruitful in physical science—namely, to frame provisional hypotheses, to deduce their mathematical consequences, and to compare these with the results of observation. There are few better illustrations of genuine scientific caution than the way in which Hipparchus, having tested the planetary theories handed down to him and having discovered their insufficiency, deliberately abstained from building up a new theory on data which he knew to be insufficient, and patiently collected fresh material, never to be used by himself, that some future astronomer might thereby be able to arrive at an improved theory.
Of positive additions to our astronomical knowledge made by the Greeks the most striking in some ways is the discovery of the approximately spherical form of the earth, a result which later work has only slightly modified. But their explanation of the chief motions of the solar system and their resolution of them into a comparatively small number of simpler motions was, in reality, a far more important contribution, though the Greek epicyclic scheme has been so remodelled, that at first sight it is difficult to recognise the relation between it and our modern views. The subsequent history will, however, show how completely each stage in the progress of astronomical science has depended on those that preceded.
When we study the great conflict in the time of Coppernicus between the ancient and modern ideas, our sympathies naturally go out towards those who supported the latter, which are now known to be more accurate, and we are apt to forget that those who then spoke in the name of the ancient astronomy and quoted Ptolemy were indeed believers in the doctrines which they had derived from the Greeks, but that their methods of thought, their frequent refusal to face facts, and their appeals to authority, were all entirely foreign to the spirit of the great men whose disciples they believed themselves to be.
THE MIDDLE AGES.
Browning’s Paracelsus.
55. About fourteen centuries elapsed between the publication of the Almagest and the death of Coppernicus (1543), a date which is in astronomy a convenient landmark on the boundary between the Middle Ages and the modern world. In this period, nearly twice as long as that which separated Thales from Ptolemy, almost four times as long as that which has now elapsed since the death of Coppernicus, no astronomical discovery of first-rate importance was made. There were some important advances in mathematics, and the art of observation was improved; but theoretical astronomy made scarcely any progress, and in some respects even went backward, the current doctrines, if in some points slightly more correct than those of Ptolemy, being less intelligently held.
In the Western World we have already seen that there was little to record for nearly five centuries after Ptolemy. After that time ensued an almost total blank, and several more centuries elapsed before there was any appreciable revival of the interest once felt in astronomy.
56. Meanwhile a remarkable development of science had taken place in the East during the 7th century. The descendants of the wild Arabs who had carried the banner of Mahomet over so large a part of the Roman empire, as well as over lands lying farther east, soon began to feel the influence of the civilisation of the peoples whom they had subjugated, and Bagdad, which in the 8th century became the capital of the Caliphs, rapidly developed into a centre of literary and scientific activity. Al Mansur, who reigned from A.D. 754 to 775, was noted as a patron of science, and collected round him learned men both from India and the West. In particular we are told of the arrival at his court in 772 of a scholar from India bearing with him an Indian treatise on astronomy,37 which was translated into Arabic by order of the Caliph, and remained the standard treatise for nearly half a century. From Al Mansur’s time onwards a body of scholars, in the first instance chiefly Syrian Christians, were at work at the court of the Caliphs translating Greek writings, often through the medium of Syriac, into Arabic. The first translations made were of the medical treatises of Hippocrates and Galen; the Aristotelian ideas contained in the latter appear to have stimulated interest in the writings of Aristotle himself, and thus to have enlarged the range of subjects regarded as worthy of study. Astronomy soon followed medicine, and became the favourite science of the Arabians, partly no doubt out of genuine scientific interest, but probably still more for the sake of its practical applications. Certain Mahometan ceremonial observances required a knowledge of the direction of Mecca, and though many worshippers, living anywhere between the Indus and the Straits of Gibraltar, must have satisfied themselves with rough-and-ready solutions of this problem, the assistance which astronomy could give in fixing the true direction was welcome in larger centres of population. The Mahometan calendar, a lunar one, also required some attention in order that fasts and feasts should be kept at the proper times. Moreover the belief in the possibility of predicting the future by means of the stars, which had flourished among the Chaldaeans (chapter I., § 18), but which remained to a great extent in abeyance among the Greeks, now revived rapidly on a congenial oriental soil, and the Caliphs were probably quite as much interested in seeing that the learned men of their courts were proficient in astrology as in astronomy proper.
The first translation of the Almagest was made by order of Al Mansur’s successor Harun al Rasid (A.D. 765 or 766-A.D. 809), the hero of the Arabian Nights. It seems, however, to have been found difficult to translate; fresh attempts were made by Honein ben Ishak (?-873) and by his son Ishak ben Honein (?-910 or 911), and a final version by Tabit ben Korra (836-901) appeared towards the end of the 9th century. Ishak ben Honein translated also a number of other astronomical and mathematical books, so that by the end of the 9th century, after which translations almost ceased, most of the more important Greek books on these subjects, as well as many minor treatises, had been translated. To this activity we owe our knowledge of several books of which the Greek originals have perished.
57. During the period in which the Caliphs lived at Damascus an observatory was erected there, and another on a more magnificent scale was built at Bagdad in 829 by the Caliph Al Mamun. The instruments used were superior both in size and in workmanship to those of the Greeks, though substantially of the same type. The Arab astronomers introduced moreover the excellent practice of making regular and as far as possible nearly continuous observations of the chief heavenly bodies, as well as the custom of noting the positions of known stars at the beginning and end of an eclipse, so as to have afterwards an exact record of the times of their occurrence. So much importance was attached to correct observations that we are told that those of special interest were recorded in formal documents signed on oath by a mixed body of astronomers and lawyers.
Al Mamun ordered Ptolemy’s estimate of the size of the earth to be verified by his astronomers. Two separate measurements of a portion of a meridian were made, which, however, agreed so closely with one another and with the erroneous estimate of Ptolemy that they can hardly have been independent and careful measurements, but rather rough verifications of Ptolemy’s figures.
58. The careful observations of the Arabs soon shewed
Comments (0)