All About Coffee, William H. Ukers [short story to read .txt] 📗
- Author: William H. Ukers
- Performer: -
Book online «All About Coffee, William H. Ukers [short story to read .txt] 📗». Author William H. Ukers
Various persons have essayed to control the roasting process automatically; but the extreme variance in composition of different coffees, the effect of changing atmospheric conditions, and the lack of constancy in the calorific power of fuels have conspired to defeat the automatic roasting machine.[165] It is even doubtful whether De Mattia's[166] process for roasting until the vapors evolved produce a violet color when passed into a solution of fuchsin decolorized with sulphur dioxid is commercially reliable.
Many patents have been granted for the treatment of coffees immediately prior to or during roasting with the object of thus improving the product. The majority of these depend upon adding solutions of sugar,[167] calcium saccharate,[168] or other carbohydrates,[169] and in the case of Eckhardt,[170] of small percentages of tannic acid and fat. In direct opposition to this latter practise, Jurgens and Westphal[171] apply alkali, ostensibly to lessen the "tannic acid" content. Brougier[172] sprays a solution containing caffein upon the roasting berries; and Potter[173] roasts the coffee together with chicory, effecting a separation at the end.
The exact effect which roasting with sugars has upon the flavor is not well understood; but it is known that it causes the beans to absorb more moisture, due to the hygroscopicity of the caramel formed. For instance, berries roasted with the addition of glucose syrup hold an additional 7 percent of water and give a darker infusion than normally roasted coffee. When the green coffee is glazed with cane sugar prior to roasting, the losses during the process are much higher than ordinarily, on account of the higher temperature required to attain the desired results. Losses for ordinary coffee taken to a 16-percent roast are 9.7 percent of the original fat and 21.1 percent of the original caffein; while for "sugar glazed" coffee the losses were 18.3 percent of the original fat and 44.3 percent of the original caffein, using 8 to 9 percent sugar with Java coffee.
Grinding and Packaging
It is a curious fact that green coffee improves upon aging, whereas after roasting it deteriorates with time. Even when packed in the best containers, age shows to a disadvantage on the roasted bean. This is due to a number of causes, among which are oxidation, volatilization of the aroma, absorption of moisture and consequent hydrolysis, and alteration in the character of the aromatic principles. Doolittle and Wright[174] in the course of some extensive experiments found that roasted coffee showed a continual gain in weight throughout 60 weeks, this gain being mostly due to moisture absorption. An investigation by Gould[175] also demonstrated that roasted coffee gives off carbon dioxid and carbon monoxid upon standing. The latter, apparently produced during roasting and retained by the cellular structure of the bean, diffuses therefrom; whereas the former comes from an ante-roasting decomposition of unstable compounds present.[176]
The surface of the whole bean forms a natural protection against atmospheric influences, and as soon as this is broken, deterioration sets in. On this account, coffee should be ground immediately before extraction if maximum efficiency is to be obtained. The cells of the beans tend to retain the fugacious aromatic principles to a certain extent; so that the more of these which are broken in grinding, the greater will be the initial loss and the more rapid the vitiation of the coffee. It might, therefore, seem desirable to grind coarsely in order to avoid this as much as possible. However, the coarser the grind, the slower and more incomplete will be the extraction. A patent[177] has been granted for a grind which contains about 90 percent fine coffee and 10 percent coarse, the patentee's claim being that in his "irregular grind" the coarse coffee retains enough of the volatile constituents to flavor the beverage, while the fine coffee gives a very high extraction, thus giving an efficient brew without sacrificing individuality.
In packaging roasted coffee the whole bean is naturally the best form to employ, but if the coffee is ground first, King[178] found that deterioration is most rapid with the coarse ground coffee, the speed decreasing with the size of the ground particles. He explains this on the ground of "ventilation"—the finer the grind, the closer the particles pack together, the less the circulation of air through the mass, and the smaller the amount of aroma which is carried away. He also found that glass makes the best container for coffee, with the tin can, and the foil-lined bag with an inner lining of glassine, not greatly inferior.
Considerable publicity has been given recently to the method of packing coffee in a sealed tin under reduced pressure. While thus packing in a partial vacuum undoubtedly retards oxidation and precludes escape of aroma from the original package, it would seem likely to hasten the initial volatilizing of the aroma. Also, it would appear from Gould's[179] work that roasted coffee evolves carbon dioxid until a certain positive pressure is attained, regardless of the initial pressure in the container. Accordingly, vacuum-packing apparently enhances decomposition of certain constituents of coffee. Whether this result is beneficial or otherwise is not quite clear.
Brewing
The old-time boiling method of making coffee has gone out of style, because the average consumer is becoming aware of the fact that it does not give a drink of maximum efficiency. Boiling the ground coffee with water results in a large loss of aromatic principles by steam distillation, a partial hydrolysis of insoluble portions of the grounds, and a subsequent extraction of the products thus formed, which give a bitter flavor to the beverage. Also, the maintenance of a high temperature by the direct application of heat has a deleterious effect upon the substances in solution. This is also true in the case of the pumping percolator, and any other device wherein the solution is caused to pass directly into steam at the point where heat is applied. Warm and cold water extract about the same amount of material from coffee; but with different rates of speed, an increase in temperature decreasing the time necessary to effect the desired result.
It is a well known fact that re-warming a coffee brew has an undesirable effect upon it. This is very probably due to the precipitation of some of the water-soluble proteins when the solution cools, and their subsequent decomposition when heat is applied directly to them in reheating the solution. The absorption of air by the solution upon cooling, with attendant oxidation, which is accentuated by the application of heat in re-warming, must also be considered. It is likewise probable that when an extract of coffee cools upon standing, some of the aromatic principles separate out and are lost by volatilization.
The method of extracting coffee which gives the most satisfaction is practised by using a grind just coarse enough to retain the individualistic flavoring components, retaining the ground coffee in a fine cloth bag, as in the urn system, or on a filter paper, as in the Tricolator, and pouring water at boiling temperature over the coffee. During the extraction, a top should be kept on the device to minimize volatilization, and the temperature of the extract should be maintained constant at about 200° F. after being made. Whether a repouring is necessary or not is dependent upon the speed with which the water passes through the coffee, which in turn is controlled by the fineness of the grind and of the filtering medium.
The Water Extract
Although many analyses of the whole coffee bean are available, but little work has been reported upon the aqueous extracts. The total water extract of roasted coffee varies from 20 to 31 percent in different kinds of coffee. The following analysis of the extract from a Santos coffee may be taken as a fair average example of the water-soluble material.[180]
(Dry Basis) Ether extract, fixed 1.06% Total nitrogen 1.06% Caffein 1.06% Crude fiber 1.06% Total ash 1.06% Reducing sugar 1.06% Caffetannic acid 1.06% Protein 1.06%
It is difficult to make the trade terms, such as acidity, astringency, etc., used in describing a cup of coffee, conform with the chemical meanings of the same terms. However, a fair explanation of the cause of some of these qualities can be made. Careful work by Warnier[181] showed the actual acidities of some East India coffees to be:
These figures may be taken as reliable examples of the true acid content of coffee; and though they seem very low, it is not at all incomprehensible that the acids which they indicate produce the acidity in a cup of coffee. They probably are mainly volatile organic acids, together with other acidic-natured products of roasting. We know that very small quantities of acids are readily detected in fruit juices and beer, and that variation in their percentage is quickly noticed, while the neutralization of this small amount of acidity leaves an insipid drink. Hence, it seems quite likely that this small acid content gives to the coffee brew its essential acidity. A few minor experiments on neutralization have proven that a very insipid beverage is produced by thus treating a coffee infusion.
The body, or what might be called the licorice-like character, of coffee, is due conceivably to the presence of bodies of a glucosidic nature and to caramel. Astringency, or bitterness, is dependent upon the decomposition products of crude fiber and chlorogenic acid, and upon the soluble mineral content of the bean. The degree to which a coffee is sweet-tasting or not is, of course, dependent upon its other characteristics, but probably varies with the reducing sugar content. Aside from the effects of these constituents upon cup quality, the influence of volatile aromatic and flavoring constituents is always evident in the cup valuation, and introduces a controlling factor in the production of an individualistic drink.
Coffee Extracts
The uncertainty of the quality of coffee brews as made from day to day, the inconvenience to the housewife of conducting the extraction, and the inevitable trend of the human race toward labor-saving devices, have combined their influences to produce a demand for a substance which will give a good cup of coffee when added to water. This gave rise to a number of concentrated liquid and solid "extracts of coffee," which, because of their general poor quality, soon brought this type of product into disrepute. This is not surprising; for these preparations were mainly mixtures of caramel and carelessly prepared extracts of chicory, roasted cereals, and cheap coffee.
Liquid extracts of coffee galore have appeared on the market only soon to disappear. Difficulty is experienced in having them maintain their quality over a protracted period of time, primarily due to the hydrolyzing action of water on the dissolved substances. They also ferment readily, although a small percentage of preservative, such as benzoate of soda, will halt spoilage.[182]
So much
Comments (0)