More Guns Less Crime, John Jr [free novels TXT] 📗
- Author: John Jr
Book online «More Guns Less Crime, John Jr [free novels TXT] 📗». Author John Jr
In contrast, crimes like auto theft of unattended cars seem unlikely to be deterred by gun ownership. While larceny is more debatable, in general—to the extent that these crimes actually involve "stealth"—the probability that victims will notice the crime being committed seems low, and thus the opportunities to use a gun are relatively rare. The effect on burglary is ambiguous from a theoretical standpoint. It is true that if nondiscretionary laws cause more people to own a guns, burglars will face greater risks when breaking into houses, and this should reduce the number of burglaries. However, if some of those who already own guns now obtain right-to-carry permits, the relative cost of crimes like armed street robbery and certain other types of robberies (where an armed patron may be present) should rise relative to that for burglary or residential robbery. This may cause some criminals to engage in burglaries instead of armed street robbery. Indeed, a recent Texas poll suggests that such substitution may be substantial: 97 percent of first-time applicants for concealed-handgun permits already owned a handgun. 17
Previous concealed-handgun studies that rely on state-level data suffer from an important potential problem: they ignore the heterogeneity within states. 18 From my telephone conversations with many law-enforcement officials, it has become very clear that there was a large variation across counties within a state in terms of how freely gun permits were granted to residents prior to the adoption of nondiscretionary right-to-carry laws. 19 All those I talked to strongly indicated that the most populous counties had previously adopted by far the most restrictive practices in issuing permits. The implication for existing studies is that simply
HOW TO TEST THE EFFECTSOFGUN CONTROL/29
using state-level data rather than county data will bias the results against finding any impact from passing right-to-carry provisions. Those counties that were unaffected by the law must be separated from those counties where the change could be quite dramatic. Even cross-sectional city data will not solve this problem, because without time-series data it is impossible to determine the impact of a change in the law for a particular city. 20
There are two ways of handling this problem. First, for the national sample, one can see whether the passage of nondiscretionary right-to-carry laws produces systematically different effects in the high- and low-population counties. Second, for three states—Arizona, Oregon, and Pennsylvania—I acquired time-series data on the number of right-to-carry permits for each county. The normal difficulty with using data on the number of permits involves the question of causality: Do more permits make crimes more costly, or do higher crime rates lead to more permits? The change in the number of permits before and after the change in the state laws allows us to rank the counties on the basis of how restrictive they had actually been in issuing permits prior to the change in the law. Of course there is still the question of why the state concealed-handgun law changed, but since we are dealing with county-level rather than state-level data, we benefit from the fact that those counties with the most restrictive policies regarding permits were also the most likely to have the new laws imposed upon them by the state.
Using county-level data also has another important advantage in that both crime and arrest rates vary widely within states. In fact, as indicated in table 2.2, the variation in both crime rates and arrest rates across states is almost always smaller than the average within-state variation across counties. With the exception of the rates for robbery, the variation in crime rates across states is from 61 to 83 percent of their average variation within states. (The difference in violent-crime rates arises because robberies make up such a large fraction of the total crimes in this category.) For arrest rates, the numbers are much more dramatic; the variation across states is as small as 15 percent of the average of the variation within states.
These results imply that it is no more accurate to view all the counties in the typical state as a homogenous unit than it is to view all the states in the United States as a homogenous unit. For example, when a state's arrest rate rises, it may make a big difference whether that increase is taking place in the most or least crime-prone counties. Widely differing estimates of the deterrent effect of increasing a state's average arrest rate may be made, depending on which types of counties are experiencing the changes in arrest rates and depending on how sensitive the crime rates are to arrest-rate changes in those particular counties. Aggregating these
Toble 2.2 Comparing the variation in crime rates across states and across counties within states from 1977 to 1992
Note: The percents are computed as the standard deviation of state means divided by the average within-state standard deviations across counties.
*Because of multiple arrests for a crime and because of the lags between the time when a crime occurs and the time an arrest takes place, the arrest rate for counties and states can be greater than one. This is much more likely to occur for counties than for states.
HOW TOTESTTHEEFFECTSOFGUN CONTROL/31
data may thus make it more difficult to discern the true relationship between deterrence and crime.
Another way of illustrating the differences between state and county data is simply to compare the counties with the highest and lowest crime rates to the states with the highest and lowest rates. Tables 2.3 and 2.4 list the ten safest and
Comments (0)