A System of Logic: Ratiocinative and Inductive, John Stuart Mill [best books to read now .txt] 📗
- Author: John Stuart Mill
- Performer: -
Book online «A System of Logic: Ratiocinative and Inductive, John Stuart Mill [best books to read now .txt] 📗». Author John Stuart Mill
It was, above all, by pointing out the insufficiency of this rude and loose conception of Induction, that Bacon merited the title so generally awarded to him, of Founder of the Inductive Philosophy. The value of his own contributions to a more philosophical theory of the subject has certainly been exaggerated. Although (along with some fundamental errors) his writings contain, more or less fully developed, several of the most important principles of the Inductive Method, physical investigation has now far outgrown the Baconian conception of Induction. Moral and political inquiry, indeed, are as yet far behind that conception. The current and approved modes of reasoning on these subjects are still of the same vicious description against which Bacon protested; the method almost exclusively employed by those professing to treat such matters inductively, is the very inductio per enumerationem simplicem which he condemns; and the experience which we hear so confidently appealed to by all sects, parties, and interests, is still, in his own emphatic words, mera palpatio.
§ 3. In order to a better understanding of the problem which the logician must solve if he would establish a scientific theory of Induction, let us compare a few cases of incorrect inductions with others which are acknowledged to be legitimate. Some, we know, which were believed for centuries to be correct, were nevertheless incorrect. That all swans are white, cannot have been a good induction, since the conclusion has turned out erroneous. The experience, however, on which the conclusion rested, was genuine. From the earliest records, the testimony of the inhabitants of the known world was unanimous on the point. The uniform experience, therefore, of the inhabitants of the known world, agreeing in a common result, without one known instance of deviation from that result, is not always sufficient to establish a general conclusion.
But let us now turn to an instance apparently not very dissimilar to this. Mankind were wrong, it seems, in concluding that all swans were white: are we also wrong, when we conclude that all men's heads grow above their shoulders, and never below, in spite of the conflicting testimony of the naturalist Pliny? As there were black swans, though civilized people had existed for three thousand years on the earth without meeting with them, may there not also be "men whose heads do grow beneath their shoulders," notwithstanding a rather less perfect unanimity of negative testimony from observers? Most persons would answer No; it was more credible that a bird should vary in its colour, than that men should vary in the relative position of their principal organs. And there is no doubt that in so saying they would be right: but to say why they are right, would be impossible, without entering more deeply than is usually done, into the true theory of Induction.
Again, there are cases in which we reckon with the most unfailing confidence upon uniformity, and other cases in which we do not count upon it at all. In some we feel complete assurance that the future will resemble the past, the unknown be precisely similar to the known. In others, however invariable may be the result obtained from the instances which have been observed, we draw from them no more than a very feeble presumption that the like result will hold in all other cases. That a straight line is the shortest distance between two points, we do not doubt to be true even in the region of the fixed stars. When a chemist announces the existence and properties of a newly-discovered substance, if we confide in his accuracy, we feel assured that the conclusions he has arrived at will hold universally, though the induction be founded but on a single instance. We do not withhold our assent, waiting for a repetition of the experiment; or if we do, it is from a doubt whether the one experiment was properly made, not whether if properly made it would be conclusive. Here, then, is a general law of nature, inferred without hesitation from a single instance; an universal proposition from a singular one. Now mark another case, and contrast it with this. Not all the instances which have been observed since the beginning of the world, in support of the general proposition that all crows are black, would be deemed a sufficient presumption of the truth of the proposition, to outweigh the testimony of one unexceptionable witness who should affirm that in some region of the earth not fully explored, he had caught and examined a crow, and had found it to be grey.
Why is a single instance, in some cases, sufficient for a complete induction, while in others, myriads of concurring instances, without a single exception known or presumed, go such a very little way towards establishing an universal proposition? Whoever can answer this question knows more of the philosophy of logic than the wisest of the ancients, and has solved the problem of induction.
CHAPTER IV.OF LAWS OF NATURE.
§ 1. In the contemplation of that uniformity in the course of nature, which is assumed in every inference from experience, one of the first observations that present themselves is, that the uniformity in question is not properly uniformity, but uniformities. The general regularity results from the coexistence of partial regularities. The course of nature in general is constant, because the course of each of the various phenomena that compose it is so. A certain fact invariably occurs whenever certain circumstances are present, and does not occur when they are absent; the like is true of another fact; and so on. From these separate threads of connexion between parts of the great whole which we term nature, a general tissue of connexion unavoidably weaves itself, by which the whole is held together. If A is always accompanied by D, B by E, and C by F, it follows that A B is accompanied by D E, A C by D F, B C by E F, and finally A B C by D E F; and thus the general character of regularity is produced, which, along with and in the midst of infinite diversity, pervades all nature.
The first point, therefore, to be noted in regard to what is called the uniformity of the course of nature, is, that it is itself a complex fact, compounded of all the separate uniformities which exist in respect to single phenomena. These various uniformities, when ascertained by what is regarded as a sufficient induction, we call in common parlance, Laws of Nature. Scientifically speaking, that title is employed in a more restricted sense, to designate the uniformities when reduced to their most simple expression. Thus in the illustration already employed, there were seven uniformities; all of which, if considered sufficiently certain, would in the more lax application of the term, be called laws of nature. But of the seven, three alone are properly distinct and independent: these being presupposed, the others follow of course. The three first, therefore, according to the stricter acceptation, are called laws of nature; the remainder not; because they are in truth mere cases of the three first; virtually included in them; said, therefore, to result from them: whoever affirms those three has already affirmed all the rest.
To substitute real examples for symbolical ones, the following are three uniformities, or call them laws of nature: the law that air has weight, the law that pressure on a fluid is propagated equally in all directions, and the law that pressure in one direction, not opposed by equal pressure in the contrary direction, produces motion, which does not cease until equilibrium is restored. From these three uniformities we should be able to predict another uniformity, namely, the rise of the mercury in the Torricellian tube. This, in the stricter use of the phrase, is not a law of nature. It is the result of laws of nature. It is a case of each and every one of the three laws: and is the only occurrence by which they could all be fulfilled. If the mercury were not sustained in the barometer, and sustained at such a height that the column of mercury were equal in weight to a column of the atmosphere of the same diameter; here would be a case, either of the air not pressing upon the surface of the mercury with the force which is called its weight, or of the downward pressure on the mercury not being propagated equally in an upward direction, or of a body pressed in one direction and not in the direction opposite, either not moving in the direction in which it is pressed, or stopping before it had attained equilibrium. If we knew, therefore, the three simple laws, but had never tried the Torricellian experiment, we might deduce its result from those laws. The known weight of the air, combined with the position of the apparatus, would bring the mercury within the first of the three inductions; the first induction would bring it within the second, and the second within the third, in the manner which we characterized in treating of Ratiocination. We should thus come to know the more complex uniformity, independently of specific experience, through our knowledge of the simpler ones from which it results; though, for reasons which will appear hereafter, verification by specific experience would still be desirable, and might possibly be indispensable.
Complex uniformities which, like this, are mere cases of simpler ones, and have, therefore, been virtually affirmed in affirming those, may with propriety be called laws, but can scarcely, in the strictness of scientific speech, be termed Laws of Nature. It is the custom in science, wherever regularity of any kind can be traced, to call the general proposition which expresses the nature of that regularity, a law; as when, in mathematics, we speak of the law of decrease of the successive terms of a converging series. But the expression law of nature has generally been employed with a sort of tacit reference to the original sense of the word law, namely, the expression of the will of a superior. When, therefore, it appeared that any of the uniformities which were observed in nature, would result spontaneously from certain other uniformities, no separate act of creative will being supposed necessary for the production of the derivative uniformities, these have not usually been spoken of as laws of nature. According to one mode of expression, the question, What are the laws of nature? may be stated thus:—What are the fewest and simplest assumptions, which being granted, the whole existing order of nature would result? Another mode of stating it would be thus: What are the fewest general propositions from which all the uniformities which exist in the universe might be deductively inferred?
Every great advance which marks an epoch in the progress of science, has consisted in a step made towards the solution of this problem. Even a simple colligation of inductions already made, without any fresh extension of the
Comments (0)