readenglishbook.com Β» Psychology Β» Psychology, Robert S. Woodworth [android based ebook reader .txt] πŸ“—

Book online Β«Psychology, Robert S. Woodworth [android based ebook reader .txt] πŸ“—Β». Author Robert S. Woodworth



1 ... 41 42 43 44 45 46 47 48 49 ... 88
Go to page:
cases illustrate simultaneous coΓΆrdination, and there is also a serial coΓΆrdination, in which a number of simple instinctive movements become hitched together in a fixed order. Examples of this are seen in dancing, writing a word, and, most notably, in speaking a word or familiar phrase.

In these ways, by strengthening, fixing and combining movements, and by new attachments and detachments between stimulus and response, the instinctive motor activity of the baby passes over into the skilled and habitual movement of the adult.

Acquired Tendencies

In the sphere of impulse and emotion the same kinds of modification occur. Detachment of an impulse or emotion from its natural stimulus is very much in evidence, since {300} what frightens or angers or amuses the little child may have no such power with the adult. One little boy of two could be thrown into gales of laughter by letting a spoon drop with a bang to the floor; and you could repeat this a dozen times in quick succession and get the response every time. But this stimulus no longer worked when he had advanced to the age of four.

The emotions get attached to substitute stimuli. Amusement can be aroused in an older child by situations that were not at all amusing to the baby. New objects arouse fear, anger, rivalry or curiosity. The emotions of the adult--with the exception of sex attraction, which is usually very weak in the child--are the emotions of the child, but they are aroused by different stimuli.

Not only so, but the emotions express themselves differently in the child and the adult. Angry behavior is one thing in the child, and another thing in the adult, so far as concerns external motor action. The child kicks and screams, where the adult strikes with his fist, or vituperates, or plots revenge. The internal bodily changes in emotion are little modified as the individual grows up--except that different stimuli arouse them--but the overt behavior is greatly modified; instead of the native reactions we find substitute reactions.

A little girl of three years, while out walking in the woods with her family, was piqued by some correction from her mother, but, instead of showing the instinctive signs of temper, she picked up a red autumn leaf and offered it to her mother, with the words, very sweetly spoken, "Isn't that a pretty leaf?" "Yes," said her mother, acquiescently. "Wouldn't you like to have that leaf?" "Yes, indeed." "I'll throw it away!" (in a savage tone of voice, and with a gesture throwing the leaf away). Here we have an early form of substitute reaction, and can glimpse how such {301} reactions become attached to the emotions. The natural outlet for the child's anger was blocked, probably because previous outbursts of rage had not had satisfactory consequences, so that the anger was dammed up, or "bottled up", for the instant, till the child found some act that would give it vent. Now supposing that the substitute reaction gave satisfaction to the child, we can well imagine that it would become attached to the angry state and be used again in a similar case. Thus, without outgrowing the emotions, we may outgrow emotional behavior that is socially unacceptable.

Emotions are also combined, much as reflexes are combined. The same object which on one occasion arouses in us one emotion may arouse another emotion on another occasion, so that eventually, whenever we see that object, we respond by a blend of the two emotions. Your chief may terrify you on some occasions, at other times amaze you by his masterly grasp on affairs, and again win your affection by his care for your own welfare; so that your attitude toward "the boss" comes to be a blend of fear, admiration and gratitude. Religion and patriotism furnish good examples of compound emotions.

Well, then, adult behavior compared with the instinctive behavior of the little child shows these several types of modification. This is interesting, but it is not all we wish to know. We want to know how the modification comes about; that is, we want to get an insight into the process of learning. Scientifically, this is one of the most fascinating topics in psychology--how we learn, how we are molded or modified by experience--and practically, it is just as important, since if we wish to educate, train, mold, improve ourselves or others, it is the process of modification that we must control; and to control it we must understand it.

To understand it we must watch the process itself; and {302} therefore we turn to studies that trace the course of events in human and animal learning.

Animal Learning

Animals do learn, all the vertebrates, at least, and many of the invertebrates. They often learn more slowly than men, but this is an advantage for our present purpose, since it makes the learning process easier to follow. Mere anecdotes of intelligent behavior in animals are of little value, but experimental studies, in which the animal's progress is followed, step by step, from the time when he is confronted with a perfectly novel situation till he has mastered the trick, have now been made in great numbers, and a few typical experiments will serve as a good introduction to the whole subject of learning.

The negative adaptation experiment.

Apply a harmless and meaningless stimulus time after time; at first the animal makes some instinctive exploring or defensive reaction; but with continued repetition of the stimulus, he ceases after a while to respond. The instinctive reaction has been detached from one of its natural stimuli.

Even in unicellular animals, negative adaptation can be observed, but in them is only temporary, like the "sensory adaptation" described in the chapter on sensation. Stop the stimulus and the original responsiveness returns after a short time. Nothing has been learned, for what is learned remains after an interval of rest.

In higher animals, permanent adaptation is common, as illustrated by a famous experiment on a spider. While the spider was in its web, a tuning fork was sounded, and the spider made the defensive reaction of dropping to the ground. It climbed back to its web, the fork was sounded again, the spider dropped again; but after several {303} repetitions in quick succession, the spider ceased to respond. Next day, to be sure, it responded as at first; but after the same performance had been repeated on several days, it ceased permanently to respond to this stimulus.

Negative adaptation is common in domestic animals, as well as in men. The horse "gets used" to the harness, and the dog to the presence of a cat in the house. Man grows accustomed to his surroundings, and to numerous unimportant sights and sounds.

The conditioned reflex experiment.

Put into a dog's mouth a tasting substance that arouses the flow of saliva, and at the same instant ring a bell; and repeat this combination of stimuli many times. Then ring the bell alone, and the saliva flows in response to the bell. The bell is a substitute stimulus, which has become attached to the salivary response by dint of having been often given along with the natural stimulus that arouses this response. At first thought, this is very weird, but do we not know of similar facts in every-day experience? The dinner bell makes the mouth water; the sight of food does the same, even the name of a savory dish will do the same.

Quite possibly, the learning process by which the substitute stimulus becomes attached to the salivary reaction is more complex in man's case. He may observe that the dinner bell means dinner, whereas the dog, we suppose, does not definitely observe the connection of the bell and the tasting substance. What the experiment shows is that a substitute stimulus can become attached to a reaction under very simple conditions.

A conditioned reflex experiment on a child deserves mention. A young child, confronted with a rabbit, showed no fear, but on the contrary reached out his hand to take the rabbit. At this instant a loud rasping noise was produced just behind the child, who quickly withdrew his hand with {304} signs of fear. After this had been repeated a few times, the child shrank from the rabbit and was evidently afraid of it. Probably it is in this way that many fears, likes and dislikes of children originate.

The signal experiment.

Place a white rat before two little doors, both just alike except that one has on it a yellow circle. The rat begins to explore. If he enters the door with the yellow sign, he finds himself in a passage which leads to a box of food; if he enters the other door he gets into a blind alley, which he explores, and then, coming out, continues his explorations till he reaches the food box and is rewarded. After this first trial is thus completed, place him back at the starting point, and he is very apt to go straight to the door that previously led to the food, for he learns simple locations very quickly. But meanwhile the experimenter may have shifted the yellow sign to the other door, connected the passage behind the marked door with the food box, and closed off the other passage; for the yellow disc in this experiment always marks the way to the food, and the other door always leads to a blind alley. The sign is shifted irregularly from one door to the other. Whenever the rat finds himself in a blind alley, he comes out and enters the other door, so finally getting his reward on every trial. But for a long time he seems incapable of responding to the yellow signal. However, the experimenter is patient; he gives the rat twenty trials a day, keeping count of the number of correct responses, and finds the number to increase little by little, till after some thirty days every response is correct and unhesitating. The rat has learned the trick.

He learns the trick somewhat more rapidly if punishment for incorrect responses is added to reward for correct responses. Place wires along the floor of the two passages, and switch an electric current into the blind alley, behind {305} the door that has no yellow circle on it. When the rat enters the blind alley and gets a shock, he makes a prompt avoiding reaction, scampering back to the starting point and cowering there for some time; eventually he makes a fresh start, avoids the door that led to the shock and therefore enters the other door, though apparently without paying any attention to the yellow sign, since when, on the next trial, the sign is moved, he avoids the place where he got the shock, without reference to the sign. But in a series of trials he learns to follow the sign.

Learning to respond to a signal might be classified under the head of substitute stimulus, since the rat learns to respond to a stimulus, the yellow disk, that at first left him unmoved. But more careful consideration shows this to be, rather, a case of substitute response. The natural reaction of a rat to a door is to enter it, not to look at its surface, but the experiment forces him to make the preliminary response of attending to the appearance of the door before entering it. The response of attending to the surface of the door is substituted for the instinctive response of entering. Otherwise put: the response of finding the marked door and entering that is substituted for the response of entering any door at random.

The maze experiment.

An animal is placed in an enclosure from which it can reach food by following a more or less complicated path. The rat is the favorite subject for this experiment, but it is a very adaptable type of experiment and can be tried on any animal. Fishes and even crabs have mastered simple mazes, and in fact to learn the way to a goal is probably possible

1 ... 41 42 43 44 45 46 47 48 49 ... 88
Go to page:

Free e-book Β«Psychology, Robert S. Woodworth [android based ebook reader .txt] πŸ“—Β» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment