readenglishbook.com » Psychology » Psychology, Robert S. Woodworth [android based ebook reader .txt] 📗

Book online «Psychology, Robert S. Woodworth [android based ebook reader .txt] 📗». Author Robert S. Woodworth



1 ... 66 67 68 69 70 71 72 73 74 ... 88
Go to page:
different varieties of the exploratory process leading up to inference. The situation that arouses reasoning differs from one case to another, the motive for engaging in this rather laborious mental process differs, and the order of events in the process differs. There are several main types of reasoning, considered as a process of mental exploration. 1. Reasoning out the solution of a practical problem.

A "problem" is a situation for which we have no ready and successful response. We cannot successfully respond by instinct or by previously acquired habit. We must find out what to do. We explore the situation, partly by the senses and actual movement, partly by the use of our wits. We observe facts in the situation that recall previous experiences or previously learned rules and principles, and apply these to the present case. Many of these clues we reject at once as of no use; others we may try out and find useless; some we may think through and thus find useless; but finally, if our exploration is successful, we observe a real clue, recall a pertinent guiding principle, and see the way out of our problem.

Two boys went into the woods for a day's outing. They climbed about all the morning, and ate their lunch in a little clearing by the side of a brook. Then they started for home, striking straight through the woods, as they thought, in the direction of home. After quite a long tramp, when they thought they should be about out of the woods, they saw clear space ahead, and, pushing forward eagerly, found themselves in the same little clearing where they had eaten their lunch! Reasoning process No. 1 now occurred: one of the boys recalled that when traversing the woods without any compass or landmark, the traveller is very likely to go in a circle; inference, "That is what we have done and {470} we probably shall do the same thing again if we go ahead. We may as well sit down and think it over."

Mental exploration ensued. "How about following the brook?" "That won't do, for it flows down into a big swamp that we couldn't get through". "How about telling directions by the sun?" "But it has so clouded over that you can't tell east from west, or north from south." "Yes, those old clouds! How fast they are going! They seem to go straight enough." "Well, say! How about following the clouds? If we keep on going straight, in any direction, for a couple of hours, we shall surely get out of the woods somewhere." This seems worth trying and actually brings the boys out to a road where they can inquire the way home.

What we find in this case is typical of problem solution. First, a desire is aroused, and it facilitates the observation and recall of facts relevant to itself. One pertinent fact is observed, another pertinent fact, or rule, is recalled; and in these two taken together the key to the problem is found.

2. Rationalization or self-justification.

While in the preceding case reasoning showed what to do, here it is called upon to justify what has been done, or what is going to be done anyway. The question is, what reason to assign for the act; we feel the need of meeting criticism, either from other people or from ourselves. The real motive for the act may be unknown to ourselves, as it often is unless we have made a careful study of motives; or, if known, it may not be such as we care to confess. We require a reasonable motive, some acceptable general principle that explains our action.

A child is unaccountably polite and helpful to his mother some day, and when asked about it replies that he simply wants to help--while his real motive may have been to score against his brother or sister, who is to some extent his rival.

{471}

If I have work requiring attention but want to go to the game, I should certainly be lacking in reasoning ability if I could not find something in the situation that made my attendance at the game imperative. I am stale, and the game will freshen me up and make me work better afterward. Or, I am in serious danger of degenerating into a mere "grind", and must fight against this evil tendency. Or, my presence at the game is necessary in order to encourage the team.

Thus, aspects of the situation that are in line with our desire bob to the surface and suggest acceptable general principles that make the intended action seem good and even necessary. Finding excuses for acts already performed is a reasoning exercise of the same sort. Man is a rationalizing animal as well as a rational animal, and his self-justifications and excuses, ludicrous though they often are, are still a tribute to his very laudable appreciation of rationality.

3. Explanation.

This form of reasoning, like the preceding, takes its start with something that raises the question, "Why?" Only, our interest in the question is objective rather than subjective. It is not our own actions that call for explanation, but some fact of nature or of human behavior. Why--with apologies to the Southern Hemisphere!--is it so cold in January? The fact arouses our curiosity. We search the situation for clues, and recall past information, just as in the attempt to solve a practical problem. "Is it because there is so much snow in January?" "But what, then, makes it snow? This clue leads us in a circle." "Perhaps, then, it is because the sun shines so little of the time, and never gets high in the sky, even at noon." That is a pretty good clue; it recalls the general principle that, without a continued supply of heat, cold is inevitable. To explain a phenomenon is to deduce it from {472} an accepted general principle; to understand it is to see it as an instance of the general principle. Such understanding is very satisfactory, since it rids you of uncertainty and sometimes from fear, and gives you a sense of power and mastery.

4. Application.

The reasoning processes discussed up to this point have taken their start with the particular, and have been concerned in a search for the general principle that holds good of the given particular case. Reasoning may also take its start at the other end, in a general statement, and seek for particular cases belonging under this general rule. But what can be the motive for this sort of reasoning? What is there about a general proposition to stimulate exploration?

Several motives may be in play. First, there may be a need for application of the general principle. Somebody whose authority you fully accept enunciates a general proposition, and you wish to apply it to special cases, either for seeing what practical use you can make of it, or simply to make its meaning more real and concrete to yourself. Your exploration here takes a different form from that thus far described. Instead of searching a concrete situation for clues, and your memory for general principles, you search your memory for particular cases where the general law should apply. If all animals are cold-blooded, excepting only birds and mammals, then fish and frogs and lizards are cold-blooded, spiders, insects, lobsters and worms; having drawn these inferences, your understanding of the general proposition becomes more complete.

5. Doubt.

A general proposition may stimulate reasoning because you doubt it, and wish to find cases where it breaks down. Perhaps somebody makes the general statement whose authority you do not accept; perhaps he says it in an assertive way that makes you want to take him down {473} a peg. Perhaps you are in the heat of an argument with him, so that every assertion he may make is a challenge. You search your memory for instances belonging under the doubted general statement, in the hope of finding one where the general statement leads to a result that is contrary to fact. "You say that all politicians are grafters. Theodore Roosevelt was a politician, therefore, according to you, he must have been a grafter. But he was not a grafter, and you will have to take back that sweeping assertion."

6. Verification.

This same general type of reasoning, which takes its start with a general proposition, and explores particular instances in order to see whether the proposition, when applied to them, gives a result in accordance with the facts, has much more serious uses; for this is the method by which a hypothesis is tested in science. A hypothesis is a general proposition put forward as a guess, subject to verification. If it is thoroughly verified, it will be accepted as a true statement, a "law of nature", but at the outset it is only a guess that may turn out to be either true or false. How shall its truth or falsity be demonstrated? By deducing its consequences, and testing these out in the realm of observed fact.

An example from the history of science is afforded by Harvey's discovery of the circulation of the blood, which was at first only a hypothesis, and a much-doubted one at that. If the blood is driven by the heart through the arteries, and returns to the heart by way of the veins, then the flow of blood in any particular artery must be away from the heart, and in any particular vein towards the heart. This deduction was readily verified. Further, there should be little tubes leading from the smallest arteries over into the smallest veins, and this discovery also was later verified, when the invention of the microscope made observation of the capillaries possible. Other deductions also were verified, {474} and in short all deductions from the hypothesis were verified, and the circulation of the blood became an accepted law.

Most hypotheses are not so fortunate as this one; most of them die by the wayside, since it is much easier to make a guess that shall fit the few facts we already know than to make one that will apply perfectly to many other facts at present unknown. A hypothesis is a great stimulus to the discovery of fresh facts. Science does not like to have unverified hypotheses lying around loose, where they may trip up the unwary. It is incumbent on any one who puts forward a hypothesis to apply it to as many special cases as possible, in order to see whether it works or not; and if the propounder of the hypothesis is so much in love with it that he fails to give it a thorough test, his scientific colleagues are sure to come to the rescue, for they, on the whole, would be rather pleased to see the other fellow's hypothesis come to grief. In this way, the rivalry motive plays a useful part in the progress and stabilizing of science.

Deductive and Inductive Reasoning

When you are sure at the outset of your general proposition, and need only to see its application to special cases, your reasoning is said to be "deductive". Such reasoning is specially used in mathematics. But in natural science you are said to employ "inductive reasoning". The process has already been described. You start with particular facts demanding explanation or generalization, and try to find some accepted law that explains them. Failing in that, you are driven to guess at a general law, i.e., to formulate a hypothesis that will fit the known facts. Then, having found such a conjectural general law, you proceed to deduce its consequences; you see that, if the hypothesis is true, such and such facts must be true. Next you go out and see whether these facts are true, and if they are, your hypothesis {475} is verified to that extent, though it may be upset later. If the deduced facts are not true, the hypothesis is false, and you have to begin all over again.

The would-be natural scientist may fail at

1 ... 66 67 68 69 70 71 72 73 74 ... 88
Go to page:

Free e-book «Psychology, Robert S. Woodworth [android based ebook reader .txt] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment