Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗
- Author: Henry Ernest Dudeney
- Performer: 0486204731
Book online «Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗». Author Henry Ernest Dudeney
Before presenting a varied series of cutting-out puzzles, some very easy and others difficult, I propose to consider one family alone—those problems involving what is known as the Greek cross with the square. This will exhibit a great variety of curious transpositions, and, by having the solutions as we go along, the reader will be saved the trouble of perpetually turning to another part of the book, and will have everything under his eye. It is hoped that in this way the article may prove somewhat instructive to the novice and interesting to others.
GREEK CROSS PUZZLES."To fret thy soul with crosses."
SPENSER.
"But, for my part, it was Greek to me."
Julius Cæsar, i. 2.
Many people are accustomed to consider the cross as a wholly Christian symbol. This is erroneous: it is of very great antiquity. The ancient Egyptians employed it as a sacred symbol, and on Greek sculptures we find representations of a cake (the supposed real origin of our hot cross buns) bearing a cross. Two such cakes were discovered at Herculaneum. Cecrops offered to Jupiter Olympus a sacred cake or boun of this kind. The cross and ball, so frequently found on Egyptian figures, is a circle and the tau cross. The circle signified the eternal preserver of the world, and the T, named from the Greek letter tau, is the monogram of Thoth, the Egyptian Mercury, meaning wisdom. This tau cross is also called by Christians the cross of St. Anthony, and is borne on a badge in the bishop's palace at Exeter. As for the Greek or mundane cross, the cross with four equal arms, we are told by competent antiquaries that it was regarded by ancient occultists for thousands of years as a sign of the dual forces of Nature—the male and female spirit of everything that was everlasting.
The Greek cross, as shown in Fig. 5, is formed by the assembling together of five equal squares. We will start with what is known as the Hindu problem, supposed to be upwards of three thousand years old. It appears in the seal of Harvard College, and is often given in old works as symbolical of mathematical science and exactitude. Cut the cross into five pieces to form a square. Figs. 6 and 7 show how this is done. It was not until the middle of the nineteenth century that we found that the cross might be transformed into a square in only four pieces. Figs. 8 and 9 will show how to do it, if we further require the four pieces to be all of the same size and shape. This Fig. 9 is remarkable because, according to Dr. Le Plongeon and others, as expounded in a work by Professor Wilson of the Smithsonian Institute, here we have the great Swastika, or sign, of "good luck to you "—the most ancient symbol of the human race of which there is any record. Professor Wilson's work gives some four hundred illustrations of this curious sign as found in the Aztec mounds of Mexico, the pyramids of Egypt, the ruins of Troy, and the ancient lore of India and China. One might almost say there is a curious affinity between the Greek cross and Swastika! If, however, we require that the four pieces shall be produced by only two clips of the scissors (assuming the puzzle is in paper form), then we must cut as in Fig. 10 to form Fig. 11, the first clip of the scissors being from a to b. Of course folding the paper, or holding the pieces together after the first cut, would not in this case be allowed. But there is an infinite number of different ways of making the cuts to solve the puzzle in four pieces. To this point I propose to return.
It will be seen that every one of these puzzles has its reverse puzzle—to cut a square into pieces to form a Greek cross. But as a square has not so many angles as the cross, it is not always equally easy to discover the true directions of the cuts. Yet in the case of the examples given, I will leave the reader to determine their direction for himself, as they are rather obvious from the diagrams.
Cut a square into five pieces that will form two separate Greek crosses of different sizes. This is quite an easy puzzle. As will be seen in Fig. 12, we have only to divide our square into 25 little squares and then cut as shown. The cross A is cut out entire, and the pieces B, C, D, and E form the larger cross in Fig. 13. The reader may here like to cut the single piece, B, into four pieces all similar in shape to itself, and form a cross with them in the manner shown in Fig. 13. I hardly need give the solution.
Cut a square into five pieces that will form two separate Greek crosses of exactly the same size. This is more difficult. We make the cuts as in Fig. 14, where the cross A comes out entire and the other four pieces form the cross in Fig. 15. The direction of the cuts is pretty obvious. It will be seen that the sides of the square in Fig. 14 are marked off into six equal parts. The sides of the cross are found by ruling lines from certain of these points to others.
I will now explain, as I promised, why a Greek cross may be cut into four pieces in an infinite number of different ways to make a square. Draw a cross, as in Fig. 16. Then draw on transparent paper the square shown in Fig. 17, taking care that the distance c to d is exactly the same as the distance a to b in the cross. Now place the transparent paper over the cross and slide it about into different positions, only be very careful always to keep the square at the same angle to the cross as shown, where a b is parallel to c d. If you place the point c exactly over a the lines will indicate the solution (Figs. 10 and 11). If you place c in the very centre of the dotted square, it will give the solution in Figs. 8 and 9. You will now see that by sliding the square about so that the point c is always within the dotted square you may get as many different solutions as you like; because, since an infinite number of different points may theoretically be placed within this square, there must be an infinite number of different solutions. But the point c need not necessarily be placed within the dotted square. It may be placed, for example, at point e to give a solution in four pieces. Here the joins at a and f may be as slender as you like. Yet if you once get over the edge at a or f you no longer have a solution in four pieces. This proof will be found both entertaining and instructive. If you do not happen to have any transparent paper at hand, any thin paper will of course do if you hold the two sheets against a pane of glass in the window.
It may have been noticed from the solutions of the puzzles that I have given that the side of the square formed from the cross is always equal to the distance a to b in Fig. 16. This must necessarily be so, and I will presently try to make the point quite clear.
We will now go one step further. I have already said that the ideal solution to a cutting-out puzzle is always that which requires the fewest possible pieces. We have just seen that two crosses of the same size may be cut out of a square in five pieces. The reader who succeeded in solving this perhaps asked himself: "Can it be done in fewer pieces?" This is just the sort of question that the true puzzle lover is always asking, and it is the right attitude for him to adopt. The answer to the question is that the puzzle may be solved in four pieces—the fewest possible. This, then, is a new puzzle. Cut a square into four pieces that will form two Greek crosses of the same size.
The solution is very beautiful. If you divide by points the sides of the square into three equal parts, the directions of the lines in Fig. 18 will be quite obvious. If you cut along these lines, the pieces A and B will form the cross in Fig. 19 and the pieces C and D the similar cross in Fig. 20. In this square we have another form of Swastika.
The reader will here appreciate the truth of my remark to the effect that it is easier to find the directions of the cuts when transforming a cross to a square than when converting a square into a cross. Thus, in Figs. 6, 8, and 10 the directions of the cuts are more obvious than in Fig. 14, where we had first to divide the sides of the square into six equal parts, and in Fig. 18, where we divide them into three equal parts. Then, supposing you were required to cut two equal Greek crosses, each into two pieces, to form a square, a glance at Figs. 19 and 20 will show how absurdly more easy this is than the reverse puzzle of cutting the square to make two crosses.
Referring to my remarks on "fallacies," I will now give a little example of these "solutions" that are not solutions. Some years ago a young correspondent sent me what he evidently thought was a brilliant new discovery—the transforming of a square into a Greek cross in four pieces by cuts all parallel to the sides of the square. I give his attempt in Figs. 21 and 22, where it will be seen that the four pieces do not form a symmetrical Greek cross, because the four arms are not really squares but oblongs. To make it a true Greek cross we should require the additions that I have indicated with dotted lines. Of course his solution produces a cross, but it is not the symmetrical Greek variety required by the conditions of the
Comments (0)