Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗
- Author: Charles Robert Darwin
Book online «Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗». Author Charles Robert Darwin
of the sea, when it entered the lower part of these gorges. (A fissure-like gorge, near Stony-top, is said by Mr. Seale to be 840 feet deep, and only 115 feet in width.) At greater heights, the evidence of the rise of the land is even less clear: nevertheless, in a bay-like depression on the table-land behind Prosperous Bay, at the height of about a thousand feet, there are flat-topped masses of rock, which it is scarcely conceivable, could have been insulated from the surrounding and similar strata, by any other agency than the denuding action of a sea- beach. Much denudation, indeed, has been effected at great elevations, which it would not be easy to explain by any other means: thus, the flat summit of the Barn, which is 2,000 feet high, presents, according to Mr. Seale, a perfect network of truncated dikes; on hills like the Flagstaff, formed of soft rock, we might suppose that the dikes had been worn down and cut off by meteoric agency, but we can hardly suppose this possible with the hard, basaltic strata of the Barn.
COAST DENUDATION.
The enormous cliffs, in many parts between one and two thousand feet in height, with which this prison-like island is surrounded, with the exception of only a few places, where narrow valleys descend to the coast, is the most striking feature in its scenery. We have seen that portions of the basaltic ring, two or three miles in length by one or two miles in breadth, and from one to two thousand feet in height, have been wholly removed. There are, also, ledges and banks of rock, rising out of profoundly deep water, and distant from the present coast between three and four miles, which, according to Mr. Seale, can be traced to the shore, and are found to be the continuations of certain well-known great dikes. The swell of the Atlantic Ocean has obviously been the active power in forming these cliffs; and it is interesting to observe that the lesser, though still great, height of the cliffs on the leeward and partially protected side of the island (extending from the Sugar-Loaf Hill to South West Point), corresponds with the lesser degree of exposure. When reflecting on the comparatively low coasts of many volcanic islands, which also stand exposed in the open ocean, and are apparently of considerable antiquity, the mind recoils from an attempt to grasp the number of centuries of exposure, necessary to have ground into mud and to have dispersed the enormous cubic mass of hard rock which has been pared off the circumference of this island. The contrast in the superficial state of St. Helena, compared with the nearest island, namely, Ascension, is very striking. At Ascension, the surfaces of the lava-streams are glossy, as if just poured forth, their boundaries are well defined, and they can often be traced to perfect craters, whence they were erupted; in the course of many long walks, I did not observe a single dike; and the coast round nearly the entire circumference is low, and has been eaten back (though too much stress must not be placed on this fact, as the island may have been subsiding) into a little wall only from ten to thirty feet high. Yet during the 340 years, since Ascension has been known, not even the feeblest signs of volcanic action have been recorded. (In the "Nautical Magazine" for 1835 page 642, and for 1838 page 361, and in the "Comptes Rendus" April 1838, accounts are given of a series of volcanic phenomena--earthquakes--troubled water--floating scoriae and columns of smoke--which have been observed at intervals since the middle of the last century, in a space of open sea between longitudes 20 degrees and 22 degrees west, about half a degree south of the equator. These facts seem to show, that an island or an archipelago is in process of formation in the middle of the Atlantic: a line joining St. Helena and Ascension, prolonged, intersects this slowly nascent focus of volcanic action.) On the other hand, at St. Helena, the course of no one stream of lava can be traced, either by the state of its boundaries or of its superficies; the mere wreck of one great crater is left; not the valleys only, but the surfaces of some of the highest hills, are interlaced by worn-down dikes, and, in many places, the denuded summits of great cones of injected rock stand exposed and naked; lastly, as we have seen, the entire circuit of the island has been deeply worn back into the grandest precipices.
CRATERS OF ELEVATION.
There is much resemblance in structure and in geological history between St. Helena, St. Jago, and Mauritius. All three islands are bounded (at least in the parts which I was able to examine) by a ring of basaltic mountains, now much broken, but evidently once continuous. These mountains have, or apparently once had, their escarpments steep towards the interior of the island, and their strata dip outwards. I was able to ascertain, only in a few cases, the inclination of the beds; nor was this easy, for the stratification was generally obscure, except when viewed from a distance. I feel, however, little doubt that, according to the researches of M. Elie de Beaumont, their average inclination is greater than that which they could have acquired, considering their thickness and compactness, by flowing down a sloping surface. At St. Helena, and at St. Jago, the basaltic strata rest on older and probably submarine beds of different composition. At all three islands, deluges of more recent lavas have flowed from the centre of the island, towards and between the basaltic mountains; and at St. Helena the central platform has been filled up by them. All three islands have been raised in mass. At Mauritius the sea, within a late geological period, must have reached to the foot of the basaltic mountains, as it now does at St. Helena; and at St. Jago it is cutting back the intermediate plain towards them. In these three islands, but especially at St. Jago and at Mauritius, when, standing on the summit of one of the old basaltic mountains, one looks in vain towards the centre of the island,--the point towards which the strata beneath one's feet, and of the mountains on each side, rudely converge,--for a source whence these strata could have been erupted; but one sees only a vast hollow platform stretched beneath, or piles of matter of more recent origin.
These basaltic mountains come, I presume, into the class of Craters of elevation: it is immaterial whether the rings were ever completely formed, for the portions which now exist have so uniform a structure, that, if they do not form fragments of true craters, they cannot be classed with ordinary lines of elevation. With respect to their origin, after having read the works of Mr. Lyell ("Principles of Geology" fifth edition volume 2 page 171.), and of MM. C. Prevost and Virlet, I cannot believe that the great central hollows have been formed by a simple dome-shaped elevation, and the consequent arching of the strata. On the other hand, I have very great difficulty in admitting that these basaltic mountains are merely the basal fragments of great volcanoes, of which the summits have either been blown off, or more probably swallowed up by subsidence. These rings are, in some instances, so immense, as at St. Jago and at Mauritius, and their occurrence is so frequent, that I can hardly persuade myself to adopt this explanation. Moreover, I suspect that the following circumstances, from their frequent concurrence, are someway connected together,--a connection not implied in either of the above views: namely, first, the broken state of the ring; showing that the now detached portions have been exposed to great denudation, and in some cases, perhaps, rendering it probable that the ring never was entire; secondly, the great amount of matter erupted from the central area after or during the formation of the ring; and thirdly, the elevation of the district in mass. As far as relates to the inclination of the strata being greater than that which the basal fragments of ordinary volcanoes would naturally possess, I can readily believe that this inclination might have been slowly acquired by that amount of elevation, of which, according to M. Elie de Beaumont, the numerous upfilled fissures or dikes are the evidence and the measure,--a view equally novel and important, which we owe to the researches of that geologist on Mount Etna.
A conjecture, including the above circumstances, occurred to me, when,-- with my mind fully convinced, from the phenomena of 1835 in South America, that the forces which eject matter from volcanic orifices and raise continents in mass are identical,--I viewed that part of the coast of St. Jago, where the horizontally upraised, calcareous stratum dips into the sea, directly beneath a cone of subsequently erupted lava. (I have given a detailed account of these phenomena, in a paper read before the Geological Society in March 1838. At the instant of time, when an immense area was convulsed and a large tract elevated, the districts immediately surrounding several of the great vents in the Cordillera remained quiescent; the subterranean forces being apparently relieved by the eruptions, which then recommenced with great violence. An event of somewhat the same kind, but on an infinitely smaller scale, appears to have taken place, according to Abich ("Views of Vesuvius" plates 1 and 9), within the great crater of Vesuvius, where a platform on one side of a fissure was raised in mass twenty feet, whilst on the other side, a train of small volcanoes burst forth in eruption.) The conjecture is that, during the slow elevation of a volcanic district or island, in the centre of which one or more orifices continue open, and thus relieve the subterranean forces, the borders are elevated more than the central area; and that the portions thus upraised do not slope gently into the central, less elevated area, as does the calcareous stratum under the cone at St. Jago, and as does a large part of the circumference of Iceland, but that they are separated from it by curved faults. (It appears, from information communicated to me in the most obliging manner by M. E. Robert, that the circumferential parts of Iceland, which are composed of ancient basaltic strata alternating with tuff, dip inland, thus forming a gigantic saucer. M. Robert found that this was the case, with a few and quite local exceptions, for a space of coast several hundred miles in length. I find this statement corroborated, as far as regards one place, by Mackenzie in his "Travels" page 377, and in another place by some MS. notes kindly lent me by Dr. Holland. The coast is deeply indented by creeks, at the head of which the land is generally low. M. Robert informs me, that the inwardly dipping strata appear to extend as far as this line, and that their inclination usually corresponds with the slope of the surface, from the high coast-mountains to the low land at the head of these creeks. In the section described by Sir G. Mackenzie, the dip is 120. The interior parts of the island chiefly consist, as far as is known, of recently erupted matter. The great size, however, of Iceland, equalling the bulkiest part of England, ought perhaps to exclude it from the class of islands we have been considering; but I cannot avoid suspecting that if the coast-mountains, instead of gently sloping into the less elevated central area, had been separated from it by irregularly curved faults, the strata would have been tilted seaward, and a "Crater of elevation," like that of St. Jago or that of Mauritius, but of much vaster dimensions, would have been formed. I will only further remark, that the frequent occurrence of extensive lakes at the foot of large volcanoes, and
COAST DENUDATION.
The enormous cliffs, in many parts between one and two thousand feet in height, with which this prison-like island is surrounded, with the exception of only a few places, where narrow valleys descend to the coast, is the most striking feature in its scenery. We have seen that portions of the basaltic ring, two or three miles in length by one or two miles in breadth, and from one to two thousand feet in height, have been wholly removed. There are, also, ledges and banks of rock, rising out of profoundly deep water, and distant from the present coast between three and four miles, which, according to Mr. Seale, can be traced to the shore, and are found to be the continuations of certain well-known great dikes. The swell of the Atlantic Ocean has obviously been the active power in forming these cliffs; and it is interesting to observe that the lesser, though still great, height of the cliffs on the leeward and partially protected side of the island (extending from the Sugar-Loaf Hill to South West Point), corresponds with the lesser degree of exposure. When reflecting on the comparatively low coasts of many volcanic islands, which also stand exposed in the open ocean, and are apparently of considerable antiquity, the mind recoils from an attempt to grasp the number of centuries of exposure, necessary to have ground into mud and to have dispersed the enormous cubic mass of hard rock which has been pared off the circumference of this island. The contrast in the superficial state of St. Helena, compared with the nearest island, namely, Ascension, is very striking. At Ascension, the surfaces of the lava-streams are glossy, as if just poured forth, their boundaries are well defined, and they can often be traced to perfect craters, whence they were erupted; in the course of many long walks, I did not observe a single dike; and the coast round nearly the entire circumference is low, and has been eaten back (though too much stress must not be placed on this fact, as the island may have been subsiding) into a little wall only from ten to thirty feet high. Yet during the 340 years, since Ascension has been known, not even the feeblest signs of volcanic action have been recorded. (In the "Nautical Magazine" for 1835 page 642, and for 1838 page 361, and in the "Comptes Rendus" April 1838, accounts are given of a series of volcanic phenomena--earthquakes--troubled water--floating scoriae and columns of smoke--which have been observed at intervals since the middle of the last century, in a space of open sea between longitudes 20 degrees and 22 degrees west, about half a degree south of the equator. These facts seem to show, that an island or an archipelago is in process of formation in the middle of the Atlantic: a line joining St. Helena and Ascension, prolonged, intersects this slowly nascent focus of volcanic action.) On the other hand, at St. Helena, the course of no one stream of lava can be traced, either by the state of its boundaries or of its superficies; the mere wreck of one great crater is left; not the valleys only, but the surfaces of some of the highest hills, are interlaced by worn-down dikes, and, in many places, the denuded summits of great cones of injected rock stand exposed and naked; lastly, as we have seen, the entire circuit of the island has been deeply worn back into the grandest precipices.
CRATERS OF ELEVATION.
There is much resemblance in structure and in geological history between St. Helena, St. Jago, and Mauritius. All three islands are bounded (at least in the parts which I was able to examine) by a ring of basaltic mountains, now much broken, but evidently once continuous. These mountains have, or apparently once had, their escarpments steep towards the interior of the island, and their strata dip outwards. I was able to ascertain, only in a few cases, the inclination of the beds; nor was this easy, for the stratification was generally obscure, except when viewed from a distance. I feel, however, little doubt that, according to the researches of M. Elie de Beaumont, their average inclination is greater than that which they could have acquired, considering their thickness and compactness, by flowing down a sloping surface. At St. Helena, and at St. Jago, the basaltic strata rest on older and probably submarine beds of different composition. At all three islands, deluges of more recent lavas have flowed from the centre of the island, towards and between the basaltic mountains; and at St. Helena the central platform has been filled up by them. All three islands have been raised in mass. At Mauritius the sea, within a late geological period, must have reached to the foot of the basaltic mountains, as it now does at St. Helena; and at St. Jago it is cutting back the intermediate plain towards them. In these three islands, but especially at St. Jago and at Mauritius, when, standing on the summit of one of the old basaltic mountains, one looks in vain towards the centre of the island,--the point towards which the strata beneath one's feet, and of the mountains on each side, rudely converge,--for a source whence these strata could have been erupted; but one sees only a vast hollow platform stretched beneath, or piles of matter of more recent origin.
These basaltic mountains come, I presume, into the class of Craters of elevation: it is immaterial whether the rings were ever completely formed, for the portions which now exist have so uniform a structure, that, if they do not form fragments of true craters, they cannot be classed with ordinary lines of elevation. With respect to their origin, after having read the works of Mr. Lyell ("Principles of Geology" fifth edition volume 2 page 171.), and of MM. C. Prevost and Virlet, I cannot believe that the great central hollows have been formed by a simple dome-shaped elevation, and the consequent arching of the strata. On the other hand, I have very great difficulty in admitting that these basaltic mountains are merely the basal fragments of great volcanoes, of which the summits have either been blown off, or more probably swallowed up by subsidence. These rings are, in some instances, so immense, as at St. Jago and at Mauritius, and their occurrence is so frequent, that I can hardly persuade myself to adopt this explanation. Moreover, I suspect that the following circumstances, from their frequent concurrence, are someway connected together,--a connection not implied in either of the above views: namely, first, the broken state of the ring; showing that the now detached portions have been exposed to great denudation, and in some cases, perhaps, rendering it probable that the ring never was entire; secondly, the great amount of matter erupted from the central area after or during the formation of the ring; and thirdly, the elevation of the district in mass. As far as relates to the inclination of the strata being greater than that which the basal fragments of ordinary volcanoes would naturally possess, I can readily believe that this inclination might have been slowly acquired by that amount of elevation, of which, according to M. Elie de Beaumont, the numerous upfilled fissures or dikes are the evidence and the measure,--a view equally novel and important, which we owe to the researches of that geologist on Mount Etna.
A conjecture, including the above circumstances, occurred to me, when,-- with my mind fully convinced, from the phenomena of 1835 in South America, that the forces which eject matter from volcanic orifices and raise continents in mass are identical,--I viewed that part of the coast of St. Jago, where the horizontally upraised, calcareous stratum dips into the sea, directly beneath a cone of subsequently erupted lava. (I have given a detailed account of these phenomena, in a paper read before the Geological Society in March 1838. At the instant of time, when an immense area was convulsed and a large tract elevated, the districts immediately surrounding several of the great vents in the Cordillera remained quiescent; the subterranean forces being apparently relieved by the eruptions, which then recommenced with great violence. An event of somewhat the same kind, but on an infinitely smaller scale, appears to have taken place, according to Abich ("Views of Vesuvius" plates 1 and 9), within the great crater of Vesuvius, where a platform on one side of a fissure was raised in mass twenty feet, whilst on the other side, a train of small volcanoes burst forth in eruption.) The conjecture is that, during the slow elevation of a volcanic district or island, in the centre of which one or more orifices continue open, and thus relieve the subterranean forces, the borders are elevated more than the central area; and that the portions thus upraised do not slope gently into the central, less elevated area, as does the calcareous stratum under the cone at St. Jago, and as does a large part of the circumference of Iceland, but that they are separated from it by curved faults. (It appears, from information communicated to me in the most obliging manner by M. E. Robert, that the circumferential parts of Iceland, which are composed of ancient basaltic strata alternating with tuff, dip inland, thus forming a gigantic saucer. M. Robert found that this was the case, with a few and quite local exceptions, for a space of coast several hundred miles in length. I find this statement corroborated, as far as regards one place, by Mackenzie in his "Travels" page 377, and in another place by some MS. notes kindly lent me by Dr. Holland. The coast is deeply indented by creeks, at the head of which the land is generally low. M. Robert informs me, that the inwardly dipping strata appear to extend as far as this line, and that their inclination usually corresponds with the slope of the surface, from the high coast-mountains to the low land at the head of these creeks. In the section described by Sir G. Mackenzie, the dip is 120. The interior parts of the island chiefly consist, as far as is known, of recently erupted matter. The great size, however, of Iceland, equalling the bulkiest part of England, ought perhaps to exclude it from the class of islands we have been considering; but I cannot avoid suspecting that if the coast-mountains, instead of gently sloping into the less elevated central area, had been separated from it by irregularly curved faults, the strata would have been tilted seaward, and a "Crater of elevation," like that of St. Jago or that of Mauritius, but of much vaster dimensions, would have been formed. I will only further remark, that the frequent occurrence of extensive lakes at the foot of large volcanoes, and
Free e-book «Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗» - read online now
Similar e-books:
Comments (0)