The Different Forms of Flowers on Plants of the Same Species, Charles Robert Darwin [tohfa e dulha read online .TXT] 📗
- Author: Charles Robert Darwin
Book online «The Different Forms of Flowers on Plants of the Same Species, Charles Robert Darwin [tohfa e dulha read online .TXT] 📗». Author Charles Robert Darwin
the abortion of the male organs. The difference in the result in these two classes of cases, may perhaps be accounted for by the matter saved through the abortion of the male organs in the females of gyno-dioecious and dioecious plants being directed (as we shall see in a future chapter) to the formation of an increased supply of seeds; whilst in the case of the exterior florets and flowers of the plants which we are here considering, such matter is expended in the development of a conspicuous corolla. Whether in the present class of cases the corolla was first affected, as seems to me the more probable view, or the reproductive organs first failed, their states of development are now firmly correlated. We see this well-illustrated in Hydrangea and Viburnum; for when these plants are cultivated, the corollas of both the interior and exterior flowers become largely developed, and their reproductive organs are aborted.
There is a closely analogous subdivision of plants, including the genus Muscari (or Feather Hyacinth) and the allied Bellevalia, which bear both perfect flowers and closed bud-like bodies that never expand. The latter resemble in this respect cleistogamic flowers, but differ widely from them in being sterile and conspicuous. Not only the aborted flower-buds and their peduncles (which are elongated apparently through the principle of compensation) are brightly coloured, but so is the upper part of the spike--all, no doubt, for the sake of guiding insects to the inconspicuous perfect flowers. From such cases as these we may pass on to certain Labiatae, for instance, Salvia Horminum in which (as I hear from Mr. Thiselton Dyer) the upper bracts are enlarged and brightly coloured, no doubt for the same purpose as before, with the flowers suppressed.
In the Carrot and some allied Umbelliferae, the central flower has its petals somewhat enlarged, and these are of a dark purplish-red tint; but it cannot be supposed that this one small flower makes the large white umbel at all more conspicuous to insects. The central flowers are said to be neuter or sterile, but I obtained by artificial fertilisation a seed (fruit) apparently perfect from one such flower. (Introduction/12. 'The English Flora' by Sir J.E. Smith 1824 volume 2 page 39.) Occasionally two or three of the flowers next to the central one are similarly characterised; and according to Vaucher "cette singuliere degeneration s'etend quelquefois a l'ombelle entiere." (Introduction/13. 'Hist. Phys. des Plantes d'Europe' 1841 tome 2 page 614. On the Echinophora page 627.) That the modified central flower is of no functional importance to the plant is almost certain. It may perhaps be a remnant of a former and ancient condition of the species, when one flower alone, the central one, was female and yielded seeds, as in the Umbelliferous genus Echinophora. There is nothing surprising in the central flower tending to retain its former condition longer than the others; for when irregular flowers become regular or peloric, they are apt to be central; and such peloric flowers apparently owe their origin either to arrested development--that is, to the preservation of an early stage of development--or to reversion. Central and perfectly developed flowers in not a few plants in their normal condition (for instance, the common Rue and Adoxa) differ slightly in structure, as in the number of the parts, from the other flowers on the same plant. All such cases seem connected with the fact of the bud which stands at the end of the shoot being better nourished than the others, as it receives the most sap. (Introduction/14. This whole subject, including pelorism, has been discussed, and references given in my 'Variation of Animals and Plants under Domestication' chapter 26 2nd edition volume 2 page 338.)
The cases hitherto mentioned relate to hermaphrodite species which bear differently constructed flowers; but there are some plants that produce differently formed seeds, of which Dr. Kuhn has given a list. (Introduction/15. 'Botanische Zeitung' 1867 page 67.) With the Umbelliferae and Compositae, the flowers that produce these seeds likewise differ, and the differences in the structure of the seeds are of a very important nature. The causes which have led to differences in the seeds on the same plant are not known; and it is very doubtful whether they subserve any special end.
We now come to our second Class, that of monoecious species, or those which have their sexes separated but borne on the same plant. The flowers necessarily differ, but when those of one sex include rudiments of the other sex, the difference between the two kinds is usually not great. When the difference is great, as we see in catkin-bearing plants, this depends largely on many of the species in this, as well as in the next or dioecious class, being fertilised by the aid of the wind; for the male flowers have in this case to produce a surprising amount of incoherent pollen. (Introduction/16. Delpino 'Studi sopra uno Lignaggio Anemofilo' Firenze 1871.) Some few monoecious plants consist of two bodies of individuals, with their flowers differing in function, though not in structure; for certain individuals mature their pollen before the female flowers on the same plant are ready for fertilisation, and are called proterandrous; whilst conversely other individuals, called proterogynous, have their stigmas mature before their pollen is ready. The purpose of this curious functional difference obviously is to favour the cross-fertilisation of distinct plants. A case of this kind was first observed by Delpino in the Walnut (Juglans regia), and has since been observed with the common Nut (Corylus avellana). I may add that according to H. Muller the individuals of some few hermaphrodite plants differ in a like manner; some being proterandrous and others proterogynous. (Introduction/17. Delpino 'Ult. Osservazioni sulla Dicogamia' part 2 fasc 2 page 337. Mr. Wetterhan and H. Muller on Corylus 'Nature' volume 11 page 507 and 1875 page 26. On proterandrous and proterogynous hermaphrodite individuals of the same species, see H. Muller 'Die Befruchtung' etc. pages 285, 339.) On cultivated trees of the Walnut and Mulberry, the male flowers have been observed to abort on certain individuals, which have thus been converted into females; but whether there are any species in a state of nature which co-exist as monoecious and female individuals, I do not know. (Introduction/18. 'Gardener's Chronicle' 1847 pages 541, 558.)
The third Class consists of dioecious species, and the remarks made under the last class with respect to the amount of difference between the male and female flowers are here applicable. It is at present an inexplicable fact that with some dioecious plants, of which the Restiaceae of Australia and the Cape of Good Hope offer the most striking instance, the differentiation of the sexes has affected the whole plant to such an extent (as I hear from Mr. Thiselton Dyer) that Mr. Bentham and Professor Oliver have often found it impossible to match the male and female specimens of the same species. In my seventh chapter some observations will be given on the gradual conversion of heterostyled and of ordinary hermaphrodite plants into dioecious or sub-dioecious species.
The fourth and last Class consists of the plants which were called polygamous by Linnaeus; but it appears to me that it would be convenient to confine this term to the species which coexist as hermaphrodites, males and females; and to give new names to several other combinations of the sexes--a plan which I shall here follow. Polygamous plants, in this confined sense of the term, may be divided into two sub-groups, according as the three sexual forms are found on the same individual or on distinct individuals. Of this latter or trioicous sub-group, the common Ash (Fraxinus excelsior) offers a good instance: thus, I examined during the spring and autumn fifteen trees growing in the same field; and of these, eight produced male flowers alone, and in the autumn not a single seed; four produced only female flowers, which set an abundance of seeds; three were hermaphrodites, which had a different aspect from the other trees whilst in flower, and two of them produced nearly as many seeds as the female trees, whilst the third produced none, so that it was in function a male. The separation of the sexes, however, is not complete in the Ash; for the female flowers include stamens, which drop off at an early period, and their anthers, which never open or dehisce, generally contain pulpy matter instead of pollen. On some female trees, however, I found a few anthers containing pollen grains apparently sound. On the male trees most of the flowers include pistils, but these likewise drop off at an early period; and the ovules, which ultimately abort, are very small compared with those in female flowers of the same age.
Of the other or monoicous sub-group of polygamous plants, or those which bear hermaphrodite, male and female flowers on the same individual, the common Maple (Acer campestre) offers a good instance; but Lecoq states that some trees are truly dioecious, and this shows how easily one state passes into another. (Introduction/19. 'Geographie Botanique' tome 5 page 367.)
A considerable number of plants generally ranked as polygamous exist under only two forms, namely, as hermaphrodites and females; and these may be called gyno- dioecious, of which the common Thyme offers a good example. In my seventh chapter I shall give some observations on plants of this nature. Other species, for instance several kinds of Atriplex, bear on the same plant hermaphrodite and female flowers; and these might be called gyno-monoecious, if a name were desirable for them.
Again there are plants which produce hermaphrodite and male flowers on the same individual, for instance, some species of Galium, Veratrum, etc.; and these might be called andro-monoecious. If there exist plants, the individuals of which consist of hermaphrodites and males, these might be distinguished as andro-dioecious. But, after making inquiries from several botanists, I can hear of no such cases. Lecoq, however, states, but without entering into full details, that some plants of Caltha palustris produce only male flowers, and that these live mingled with the hermaphrodites. (Introduction/20. 'Geographie Botanique' tome 4 page 488.) The rarity of such cases as this last one is remarkable, as the presence of hermaphrodite and male flowers on the same individual is not an unusual occurrence; it would appear as if nature did not think it worth while to devote a distinct individual to the production of pollen, excepting when this was indispensably necessary, as in the case of dioecious species.
I have now finished my brief sketch of the several cases, as far as known to me, in which flowers differing in structure or in function are produced by the same species of plant. Full details will be given in the following chapters with respect to many of these plants. I will begin with the heterostyled, then pass on to certain dioecious, sub-dioecious, and polygamous species, and end with the cleistogamic. For the convenience of the reader, and to save space, the less important cases and details have been printed in smaller type [].
I cannot close this Introduction without expressing my warm thanks to Dr. Hooker for supplying me with specimens and for other aid; and to Mr. Thiselton Dyer and Professor Oliver for giving me much information and other assistance. Professor Asa Gray, also, has uniformly aided me in many ways. To Fritz Muller of St. Catharina, in Brazil, I am indebted for many dried flowers of heterostyled plants, often accompanied with valuable notes.
CHAPTER I.
HETEROSTYLED DIMORPHIC PLANTS: PRIMULACEAE.
Primula veris or the cowslip. Differences in structure between the two forms. Their degrees of fertility when legitimately and illegitimately united. P. elatior, vulgaris, Sinensis, auricula, etc. Summary on the fertility of the heterostyled species of Primula. Homostyled species of Primula. Hottonia palustris. Androsace vitalliana.
It has long been known to botanists that the common cowslip (Primula veris, Brit. Flora, var. officinalis, Lin.) exists under two forms, about equally numerous, which
There is a closely analogous subdivision of plants, including the genus Muscari (or Feather Hyacinth) and the allied Bellevalia, which bear both perfect flowers and closed bud-like bodies that never expand. The latter resemble in this respect cleistogamic flowers, but differ widely from them in being sterile and conspicuous. Not only the aborted flower-buds and their peduncles (which are elongated apparently through the principle of compensation) are brightly coloured, but so is the upper part of the spike--all, no doubt, for the sake of guiding insects to the inconspicuous perfect flowers. From such cases as these we may pass on to certain Labiatae, for instance, Salvia Horminum in which (as I hear from Mr. Thiselton Dyer) the upper bracts are enlarged and brightly coloured, no doubt for the same purpose as before, with the flowers suppressed.
In the Carrot and some allied Umbelliferae, the central flower has its petals somewhat enlarged, and these are of a dark purplish-red tint; but it cannot be supposed that this one small flower makes the large white umbel at all more conspicuous to insects. The central flowers are said to be neuter or sterile, but I obtained by artificial fertilisation a seed (fruit) apparently perfect from one such flower. (Introduction/12. 'The English Flora' by Sir J.E. Smith 1824 volume 2 page 39.) Occasionally two or three of the flowers next to the central one are similarly characterised; and according to Vaucher "cette singuliere degeneration s'etend quelquefois a l'ombelle entiere." (Introduction/13. 'Hist. Phys. des Plantes d'Europe' 1841 tome 2 page 614. On the Echinophora page 627.) That the modified central flower is of no functional importance to the plant is almost certain. It may perhaps be a remnant of a former and ancient condition of the species, when one flower alone, the central one, was female and yielded seeds, as in the Umbelliferous genus Echinophora. There is nothing surprising in the central flower tending to retain its former condition longer than the others; for when irregular flowers become regular or peloric, they are apt to be central; and such peloric flowers apparently owe their origin either to arrested development--that is, to the preservation of an early stage of development--or to reversion. Central and perfectly developed flowers in not a few plants in their normal condition (for instance, the common Rue and Adoxa) differ slightly in structure, as in the number of the parts, from the other flowers on the same plant. All such cases seem connected with the fact of the bud which stands at the end of the shoot being better nourished than the others, as it receives the most sap. (Introduction/14. This whole subject, including pelorism, has been discussed, and references given in my 'Variation of Animals and Plants under Domestication' chapter 26 2nd edition volume 2 page 338.)
The cases hitherto mentioned relate to hermaphrodite species which bear differently constructed flowers; but there are some plants that produce differently formed seeds, of which Dr. Kuhn has given a list. (Introduction/15. 'Botanische Zeitung' 1867 page 67.) With the Umbelliferae and Compositae, the flowers that produce these seeds likewise differ, and the differences in the structure of the seeds are of a very important nature. The causes which have led to differences in the seeds on the same plant are not known; and it is very doubtful whether they subserve any special end.
We now come to our second Class, that of monoecious species, or those which have their sexes separated but borne on the same plant. The flowers necessarily differ, but when those of one sex include rudiments of the other sex, the difference between the two kinds is usually not great. When the difference is great, as we see in catkin-bearing plants, this depends largely on many of the species in this, as well as in the next or dioecious class, being fertilised by the aid of the wind; for the male flowers have in this case to produce a surprising amount of incoherent pollen. (Introduction/16. Delpino 'Studi sopra uno Lignaggio Anemofilo' Firenze 1871.) Some few monoecious plants consist of two bodies of individuals, with their flowers differing in function, though not in structure; for certain individuals mature their pollen before the female flowers on the same plant are ready for fertilisation, and are called proterandrous; whilst conversely other individuals, called proterogynous, have their stigmas mature before their pollen is ready. The purpose of this curious functional difference obviously is to favour the cross-fertilisation of distinct plants. A case of this kind was first observed by Delpino in the Walnut (Juglans regia), and has since been observed with the common Nut (Corylus avellana). I may add that according to H. Muller the individuals of some few hermaphrodite plants differ in a like manner; some being proterandrous and others proterogynous. (Introduction/17. Delpino 'Ult. Osservazioni sulla Dicogamia' part 2 fasc 2 page 337. Mr. Wetterhan and H. Muller on Corylus 'Nature' volume 11 page 507 and 1875 page 26. On proterandrous and proterogynous hermaphrodite individuals of the same species, see H. Muller 'Die Befruchtung' etc. pages 285, 339.) On cultivated trees of the Walnut and Mulberry, the male flowers have been observed to abort on certain individuals, which have thus been converted into females; but whether there are any species in a state of nature which co-exist as monoecious and female individuals, I do not know. (Introduction/18. 'Gardener's Chronicle' 1847 pages 541, 558.)
The third Class consists of dioecious species, and the remarks made under the last class with respect to the amount of difference between the male and female flowers are here applicable. It is at present an inexplicable fact that with some dioecious plants, of which the Restiaceae of Australia and the Cape of Good Hope offer the most striking instance, the differentiation of the sexes has affected the whole plant to such an extent (as I hear from Mr. Thiselton Dyer) that Mr. Bentham and Professor Oliver have often found it impossible to match the male and female specimens of the same species. In my seventh chapter some observations will be given on the gradual conversion of heterostyled and of ordinary hermaphrodite plants into dioecious or sub-dioecious species.
The fourth and last Class consists of the plants which were called polygamous by Linnaeus; but it appears to me that it would be convenient to confine this term to the species which coexist as hermaphrodites, males and females; and to give new names to several other combinations of the sexes--a plan which I shall here follow. Polygamous plants, in this confined sense of the term, may be divided into two sub-groups, according as the three sexual forms are found on the same individual or on distinct individuals. Of this latter or trioicous sub-group, the common Ash (Fraxinus excelsior) offers a good instance: thus, I examined during the spring and autumn fifteen trees growing in the same field; and of these, eight produced male flowers alone, and in the autumn not a single seed; four produced only female flowers, which set an abundance of seeds; three were hermaphrodites, which had a different aspect from the other trees whilst in flower, and two of them produced nearly as many seeds as the female trees, whilst the third produced none, so that it was in function a male. The separation of the sexes, however, is not complete in the Ash; for the female flowers include stamens, which drop off at an early period, and their anthers, which never open or dehisce, generally contain pulpy matter instead of pollen. On some female trees, however, I found a few anthers containing pollen grains apparently sound. On the male trees most of the flowers include pistils, but these likewise drop off at an early period; and the ovules, which ultimately abort, are very small compared with those in female flowers of the same age.
Of the other or monoicous sub-group of polygamous plants, or those which bear hermaphrodite, male and female flowers on the same individual, the common Maple (Acer campestre) offers a good instance; but Lecoq states that some trees are truly dioecious, and this shows how easily one state passes into another. (Introduction/19. 'Geographie Botanique' tome 5 page 367.)
A considerable number of plants generally ranked as polygamous exist under only two forms, namely, as hermaphrodites and females; and these may be called gyno- dioecious, of which the common Thyme offers a good example. In my seventh chapter I shall give some observations on plants of this nature. Other species, for instance several kinds of Atriplex, bear on the same plant hermaphrodite and female flowers; and these might be called gyno-monoecious, if a name were desirable for them.
Again there are plants which produce hermaphrodite and male flowers on the same individual, for instance, some species of Galium, Veratrum, etc.; and these might be called andro-monoecious. If there exist plants, the individuals of which consist of hermaphrodites and males, these might be distinguished as andro-dioecious. But, after making inquiries from several botanists, I can hear of no such cases. Lecoq, however, states, but without entering into full details, that some plants of Caltha palustris produce only male flowers, and that these live mingled with the hermaphrodites. (Introduction/20. 'Geographie Botanique' tome 4 page 488.) The rarity of such cases as this last one is remarkable, as the presence of hermaphrodite and male flowers on the same individual is not an unusual occurrence; it would appear as if nature did not think it worth while to devote a distinct individual to the production of pollen, excepting when this was indispensably necessary, as in the case of dioecious species.
I have now finished my brief sketch of the several cases, as far as known to me, in which flowers differing in structure or in function are produced by the same species of plant. Full details will be given in the following chapters with respect to many of these plants. I will begin with the heterostyled, then pass on to certain dioecious, sub-dioecious, and polygamous species, and end with the cleistogamic. For the convenience of the reader, and to save space, the less important cases and details have been printed in smaller type [].
I cannot close this Introduction without expressing my warm thanks to Dr. Hooker for supplying me with specimens and for other aid; and to Mr. Thiselton Dyer and Professor Oliver for giving me much information and other assistance. Professor Asa Gray, also, has uniformly aided me in many ways. To Fritz Muller of St. Catharina, in Brazil, I am indebted for many dried flowers of heterostyled plants, often accompanied with valuable notes.
CHAPTER I.
HETEROSTYLED DIMORPHIC PLANTS: PRIMULACEAE.
Primula veris or the cowslip. Differences in structure between the two forms. Their degrees of fertility when legitimately and illegitimately united. P. elatior, vulgaris, Sinensis, auricula, etc. Summary on the fertility of the heterostyled species of Primula. Homostyled species of Primula. Hottonia palustris. Androsace vitalliana.
It has long been known to botanists that the common cowslip (Primula veris, Brit. Flora, var. officinalis, Lin.) exists under two forms, about equally numerous, which
Free e-book «The Different Forms of Flowers on Plants of the Same Species, Charles Robert Darwin [tohfa e dulha read online .TXT] 📗» - read online now
Similar e-books:
Comments (0)