A History of Science, vol 2, Henry Smith Williams [read this if txt] 📗
- Author: Henry Smith Williams
- Performer: -
Book online «A History of Science, vol 2, Henry Smith Williams [read this if txt] 📗». Author Henry Smith Williams
Paracelsus based his medical teachings on four “pillars”
—philosophy, astronomy, alchemy, and virtue of the physician—a strange-enough equipment surely, and yet, properly interpreted, not quite so anomalous as it seems at first blush. Philosophy was the “gate of medicine,” whereby the physician entered rightly upon the true course of learning; astronomy, the study of the stars, was all-important because “they (the stars) caused disease by their exhalations, as, for instance, the sun by excessive heat”; alchemy, as he interpreted it, meant the improvement of natural substances for man’s benefit; while virtue in the physician was necessary since “only the virtuous are permitted to penetrate into the innermost nature of man and the universe.”
All his writings aim to promote progress in medicine, and to hold before the physician a grand ideal of his profession. In this his views are wide and far-reaching, based on the relationship which man bears to nature as a whole; but in his sweeping condemnations he not only rejected Galenic therapeutics and Galenic anatomy, but condemned dissections of any kind. He laid the cause of all diseases at the door of the three mystic elements—salt, sulphur, and mercury. In health he supposed these to be mingled in the body so as to be indistinguishable; a slight separation of them produced disease; and death he supposed to be the result of their complete separation. The spiritual agencies of diseases, he said, had nothing to do with either angels or devils, but were the spirits of human beings.
He believed that all food contained poisons, and that the function of digestion was to separate the poisonous from the nutritious. In the stomach was an archaeus, or alchemist, whose duty was to make this separation. In digestive disorders the archaeus failed to do this, and the poisons thus gaining access to the system were “coagulated” and deposited in the joints and various other parts of the body. Thus the deposits in the kidneys and tartar on the teeth were formed; and the stony deposits of gout were particularly familiar examples of this. All this is visionary enough, yet it shows at least a groping after rational explanations of vital phenomena.
Like most others of his time, Paracelsus believed firmly in the doctrine of “signatures”—a belief that every organ and part of the body had a corresponding form in nature, whose function was to heal diseases of the organ it resembled. The vagaries of this peculiar doctrine are too numerous and complicated for lengthy discussion, and varied greatly from generation to generation. In general, however, the theory may be summed up in the words of Paracelsus: “As a woman is known by her shape, so are the medicines.” Hence the physicians were constantly searching for some object of corresponding shape to an organ of the body. The most natural application of this doctrine would be the use of the organs of the lower animals for the treatment of the corresponding diseased organs in man. Thus diseases of the heart were to be treated with the hearts of animals, liver disorders with livers, and so on. But this apparently simple form of treatment had endless modifications and restrictions, for not all animals were useful. For example, it was useless to give the stomach of an ox in gastric diseases when the indication in such cases was really for the stomach of a rat. Nor were the organs of animals the only “signatures” in nature. Plants also played a very important role, and the herb-doctors devoted endless labor to searching for such plants. Thus the blood-root, with its red juice, was supposed to be useful in blood diseases, in stopping hemorrhage, or in subduing the redness of an inflammation.
Paracelsus’s system of signatures, however, was so complicated by his theories of astronomy and alchemy that it is practically beyond comprehension. It is possible that he himself may have understood it, but it is improbable that any one else did—as shown by the endless discussions that have taken place about it.
But with all the vagaries of his theories he was still rational in his applications, and he attacked to good purpose the complicated “shot-gun” prescriptions of his contemporaries, advocating more simple methods of treatment.
The ever-fascinating subject of electricity, or, more specifically, “magnetism,” found great favor with him, and with properly adjusted magnets he claimed to be able to cure many diseases. In epilepsy and lockjaw, for example, one had but to fasten magnets to the four extremities of the body, and then, “when the proper medicines were given,” the cure would be effected. The easy loop-hole for excusing failure on the ground of improper medicines is obvious, but Paracelsus declares that this one prescription is of more value than “all the humoralists have ever written or taught.”
Since Paracelsus condemned the study of anatomy as useless, he quite naturally regarded surgery in the same light. In this he would have done far better to have studied some of his predecessors, such as Galen, Paul of Aegina, and Avicenna. But instead of “cutting men to pieces,” he taught that surgeons would gain more by devoting their time to searching for the universal panacea which would cure all diseases, surgical as well as medical. In this we detect a taint of the popular belief in the philosopher’s stone and the magic elixir of life, his belief in which have been stoutly denied by some of his followers. He did admit, however, that one operation alone was perhaps permissible—lithotomy, or the “cutting for stone.”
His influence upon medicine rests undoubtedly upon his revolutionary attitude, rather than on any great or new discoveries made by him. It is claimed by many that he brought prominently into use opium and mercury, and if this were indisputably proven his services to medicine could hardly be overestimated. Unfortunately, however, there are good grounds for doubting that he was particularly influential in reintroducing these medicines. His chief influence may perhaps be summed up in a single phrase—he overthrew old traditions.
To Paracelsus’s endeavors, however, if not to the actual products of his work, is due the credit of setting in motion the chain of thought that developed finally into scientific chemistry. Nor can the ultimate aim of the modern chemist seek a higher object than that of this sixteenth-century alchemist, who taught that “true alchemy has but one aim and object, to extract the quintessence of things, and to prepare arcana, tinctures, and elixirs which may restore to man the health and soundness he has lost.”
THE GREAT ANATOMISTS
About the beginning of the sixteenth century, while Paracelsus was scoffing at the study of anatomy as useless, and using his influence against it, there had already come upon the scene the first of the great anatomists whose work was to make the century conspicuous in that branch of medicine.
The young anatomist Charles etienne (1503-1564) made one of the first noteworthy discoveries, pointing out for the first time that the spinal cord contains a canal, continuous throughout its length. He also made other minor discoveries of some importance, but his researches were completely overshadowed and obscured by the work of a young Fleming who came upon the scene a few years later, and who shone with such brilliancy in the medical world that he obscured completely the work of his contemporary until many years later. This young physician, who was destined to lead such an eventful career and meet such an untimely end as a martyr to science, was Andrew Vesalius (1514-1564), who is called the “greatest of anatomists.” At the time he came into the field medicine was struggling against the dominating Galenic teachings and the theories of Paracelsus, but perhaps most of all against the superstitions of the time. In France human dissections were attended with such dangers that the young Vesalius transferred his field of labors to Italy, where such investigations were covertly permitted, if not openly countenanced.
From the very start the young Fleming looked askance at the accepted teachings of the day, and began a series of independent investigations based upon his own observations. The results of these investigations he gave in a treatise on the subject which is regarded as the first comprehensive and systematic work on human anatomy. This remarkable work was published in the author’s twenty-eighth or twenty-ninth year. Soon after this Vesalius was invited as imperial physician to the court of Emperor Charles V.
He continued to act in the same capacity at the court of Philip II., after the abdication of his patron. But in spite of this royal favor there was at work a factor more powerful than the influence of the monarch himself—an instrument that did so much to retard scientific progress, and by which so many lives were brought to a premature close.
Vesalius had received permission from the kinsmen of a certain grandee to perform an autopsy. While making his observations the heart of the outraged body was seen to palpitate—so at least it was reported. This was brought immediately to the attention of the Inquisition, and it was only by the intervention of the king himself that the anatomist escaped the usual fate of those accused by that tribunal. As it was, he was obliged to perform a pilgrimage to the Holy Land. While returning from this he was shipwrecked, and perished from hunger and exposure on the island of Zante.
At the very time when the anatomical writings of Vesalius were startling the medical world, there was living and working contemporaneously another great anatomist, Eustachius (died 1574), whose records of his anatomical investigations were ready for publication only nine years after the publication of the work of Vesalius. Owing to the unfortunate circumstances of the anatomist, however, they were never published during his lifetime—not, in fact, until 1714. When at last they were given to the world as Anatomical Engravings, they showed conclusively that Eustachius was equal, if not superior to Vesalius in his knowledge of anatomy. It has been said of this remarkable collection of engravings that if they had been published when they were made in the sixteenth century, anatomy would have been advanced by at least two centuries. But be this as it may, they certainly show that their author was a most careful dissector and observer.
Eustachius described accurately for the first time certain structures of the middle ear, and rediscovered the tube leading from the ear to the throat that bears his name. He also made careful studies of the teeth and the phenomena of first and second dentition. He was not baffled by the minuteness of structures and where he was unable to study them with the naked eye he used glasses for the purpose, and resorted to macerations and injections for the study of certain complicated structures.
But while the fruit of his pen and pencil were lost for more than a century after his death, the effects of his teachings were not; and his two pupils, Fallopius and Columbus, are almost as well known to-day as their illustrious teacher. Columbus (1490-1559) did much in correcting the mistakes made in the anatomy of the bones as described by Vesalius. He also added much to the science by giving correct accounts of the shape and cavities of the heart, and made many other discoveries of minor importance.
Fallopius (1523-1562) added considerably to the general knowledge of anatomy, made several discoveries in the anatomy of the ear, and also several organs in the abdominal cavity.
At this time a most vitally important controversy was in progress as to whether or not the veins of the bodies were supplied with valves, many anatomists being
Comments (0)