The Elements of Geology, William Harmon Norton [e textbook reader TXT] 📗
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology, William Harmon Norton [e textbook reader TXT] 📗». Author William Harmon Norton
SLATY CLEAVAGE. Rocks which have yielded to pressure often split easily in a certain direction across the bedding planes. This cleavage is known as slaty cleavage, since it is most perfectly developed in fine-grained, homogeneous rocks, such as slates, which cleave to the thin, smooth-surfaced plates with which we are familiar in the slates used in roofing and for ciphering and blackboards. In coarse-grained rocks, pressure develops more distant partings which separate the rocks into blocks.
Slaty cleavage cannot be due to lamination, since it commonly crosses bedding planes at an angle, while these planes have been often well-nigh or quite obliterated. Examining slate with a microscope, we find that its cleavage is due to the grain of the rock. Its particles are flattened and lie with their broad faces in parallel planes, along which the rock naturally splits more easily than in any other direction. The irregular grains of the mud which has been altered to slate have been squeezed flat by a pressure exerted at right angles to the plane of cleavage. Cleavage is found only in folded rocks, and, as we may see in Figure 176, the strike of the cleavage runs parallel to the strike of the strata and the axis of the folds. The dip of the cleavage is generally steep, hence the pressure was nearly horizontal. The pressure which has acted at right angles to the cleavage, and to which it is due, is the same lateral pressure which has thrown the strata into folds.
We find additional proof that slates have undergone compression at right angles to their cleavage in the fact that any inclusions in them, such as nodules and fossils, have been squeezed out of shape and have their long diameters lying in the planes of cleavage.
That pressure is competent to cause cleavage is shown by experiment. Homogeneous material of fine grain, such as beeswax, when subjected to heavy pressure cleaves at right angles to the direction of the compressing force.
RATE OF FOLDING. All the facts known with regard to rock deformation agree that it is a secular process, taking place so slowly that, like the deepening of valleys by erosion, it escapes the notice of the inhabitants of the region. It is only under stresses slowly applied that rocks bend without breaking. The folds of some of the highest mountains have risen so gradually that strong, well-intrenched rivers which had the right of way across the region were able to hold to their courses, and as a circular saw cuts its way through the log which is steadily driven against it, so these rivers sawed their gorges through the fold as fast as it rose beneath them. Streams which thus maintain the course which they had antecedent to a deformation of the region are known as ANTECEDENT streams. Examples of such are the Sutlej and other rivers of India, whose valleys trench the outer ranges of the Himalayas and whose earlier river deposits have been upturned by the rising ridges. On the other hand, mountain crests are usually divides, parting the head waters of different drainage systems. In these cases the original streams of the region have been broken or destroyed by the uplift of the mountain mass across their paths.
On the whole, which have worked more rapidly, processes of deformation or of denudation?
LAND FORMS DUE TO FOLDINGAs folding goes on so slowly, it is never left to form surface features unmodified by the action of other agencies. An anticlinal fold is attacked by erosion as soon as it begins to rise above the original level, and the higher it is uplifted, and the stronger are its slopes, the faster is it worn away. Even while rising, a young upfold is often thus unroofed, and instead of appearing as a long, Smooth, boat-shaped ridge, it commonly has had opened along the rocks of the axis, when these are weak, a valley which is overlooked by the infacing escarpments of the hard layers of the sides of the fold. Under long-continued erosion, anticlines may be degraded to valleys, while the synclines of the same system may be left in relief as ridges.
FOLDED MOUNTAINS. The vastness of the forces which wrinkle the crust is best realized in the presence of some lofty mountain range. All mountains, indeed, are not the result of folding. Some, as we shall see, are due to upwarps or to fractures of the crust; some are piles of volcanic material; some are swellings caused by the intrusion of molten matter beneath the surface; some are the relicts left after the long denudation of high plateaus.
But most of the mountain ranges of the earth, and some of the greatest, such as the Alps and the Himalayas, were originally mountains of folding. The earth's crust has wrinkled into a fold; or into a series of folds, forming a series of parallel ridges and intervening valleys; or a number of folds have been mashed together into a vast upswelling of the crust, in which the layers have been so crumpled and twisted, overturned and crushed, that it is exceedingly difficult to make out the original structure.
The close and intricate folds seen in great mountain ranges were formed, as we have seen, deep below the surface, within the zone of folding. Hence they may never have found expression in any individual surface features. As the result of these deformations deep under ground the surface was broadly lifted to mountain height, and the crumpled and twisted mountain structures are now to be seen only because erosion has swept away the heavy cover of surface rocks under whose load they were developed.
When the structure of mountains has been deciphered it is possible to estimate roughly the amount of horizontal compression which the region has suffered. If the strata of the folds of the Alps were smoothed out, they would occupy a belt seventy-four miles wider than that to which they have been compressed, or twice their present width. A section across the Appalachian folds in Pennyslvania shows a compression to about two thirds the original width; the belt has been shortened thirty-five miles in every hundred.
Considering the thickness of their strata, the compression which mountains have undergone accounts fully for their height, with enough to spare for all that has been lost by denudation.
The Appalachian folds involve strata thirty thousand feet in thickness. Assuming that the folded strata rested on an unyielding foundation, and that what was lost in width was gained in height, what elevation would the range have reached had not denudation worn it as it rose?
THE LIFE HISTORY OF MOUNTAINS. While the disturbance and uplift of mountain masses are due to deformation, their sculpture into ridges and peaks, valleys and deep ravines, and all the forms which meet the eye in mountain scenery, excepting in the very youngest ranges, is due solely to erosion. We may therefore classify mountains according to the degree to which they have been dissected. The Juras are an example of the stage of early youth, in which the anticlines still persist as ridges and the synclines coincide with the valleys; this they owe as much to the slight height of their uplift as to the recency of its date.
The Alps were upheaved at various times, the last uplift being later than the uplift of the Juras, but to so much greater height that erosion has already advanced them well on towards maturity. The mountain mass has been cut to the core, revealing strange contortions of strata which could never have found expression at the surface. Sharp peaks, knife-edged crests, deep valleys with ungraded slopes subject to frequent landslides, are all features of Alpine scenery typical of a mountain range at this stage in its life history. They represent the survival of the hardest rocks and the strongest structures, and the destruction of the weaker in their long struggle for existence against the agents of erosion. Although miles of rock have been removed from such ranges as the Alps, we need not suppose that they ever stood much, if any, higher than at present. All this vast denudation may easily have been accomplished while their slow upheaval was going on; in several mountain ranges we have evidence that elevation has not yet ceased.
Under long denudation mountains are subdued to the forms characteristic of old age. The lofty peaks and jagged crests of their earlier life are smoothed down to low domes and rounded crests. The southern Appalachians and portions of the Hartz Mountains in Germany are examples of mountains which have reached this stage.
There are numerous regions of upland and plains in which the rocks are found to have the same structure that we have seen in folded mountains; they are tilted, crumpled, and overturned, and have clearly suffered intense compression. We may infer that their folds were once lifted to the height of mountains and have since been wasted to low-lying lands. Such a section as that of Figure 67 illustrates how ancient mountains may be leveled to their roots, and represents the final stage to which even the Alps and the Himalayas must sometime arrive. Mountains, perhaps of Alpine height, once stood about Lake Superior; a lofty range once extended from New England and New Jersey southwestward to Georgia along the Piedmont belt. In our study of historic geology we shall see more clearly how short is the life of mountains as the earth counts time, and how great ranges have been lifted, worn away, and again upheaved into a new cycle of erosion.
THE SEDIMENTARY HISTORY OF FOLDED MOUNTAINS. We may mention here some of the conditions which have commonly been antecedent to great foldings of the crust.
1. Mountain ranges are made of belts of enormously and exceptionally thick sediments. The strata of the Appalachians are thirty thousand feet thick, while the same formations thin out to five thousand feet in the Mississippi valley. The folds of the Wasatch Mountains involve strata thirty thousand feet thick, which thin to two thousand feet in the region of the Plains.
2. The sedimentary strata of which mountains are made are for the most part the shallow-water deposits of continental deltas. Mountain ranges have been upfolded along the margins of continents.
3. Shallow-water deposits of the immense thickness found in mountain ranges can be laid only in a gradually sinking area. A profound subsidence, often to be reckoned in tens of thousands of feet, precedes the upfolding of a mountain range.
Thus the history of mountains of folding is as follows: For long ages the sea bottom off the coast of a continent slowly subsides, and the great trough, as fast as it forms, is filled with sediments, which at last come to be many thousands of feet thick. The downward movement finally ceases. A slow but resistless pressure sets in, and gradually, and with a long series of many intermittent movements, the vast mass of accumulated sediments is crumpled and uplifted into a mountain range.
FRACTURES AND DISLOCATIONS OF THE CRUSTConsidering the immense stresses to which the rocks of the crust are subjected, it is not surprising to find that they often yield by fracture, like brittle bodies, instead of by folding and flowing, like plastic solids. Whether rocks bend or break depends on the character and condition of the rocks, the load of overlying rocks which they bear, and the amount of the force and the slowness with which it is applied.
JOINTS. At the surface, where their load is least, we find rocks universally broken into blocks of greater or less size by partings known as joints. Under this name are included many division planes caused by cooling and drying; but it is now generally believed that the larger and more regular joints, especially those which run parallel to the dip and strike of the strata, are fractures due to up-and-down movements and foldings and twistings of the rocks.
Joints are used to great advantage in quarrying, and we have seen how they are utilized by the weather in breaking up rock masses, by rivers in widening their valleys, by the sea in driving back its cliffs, by glaciers in plucking their beds, and how they are enlarged in soluble rocks to form natural passageways for underground waters. The ends of the parted strata match along both sides of joint planes; in. joints there has been little or no displacement of the broken rocks.
FAULTS. In Figure 184 the rocks have been both broken and dislocated along the plane ff'. One side must have been moved up or down past the other. Such a dislocation is called a fault. The amount of the displacement, as measured by the vertical distance between the ends
Comments (0)