readenglishbook.com » Science » The Elements of Geology, William Harmon Norton [e textbook reader TXT] 📗

Book online «The Elements of Geology, William Harmon Norton [e textbook reader TXT] 📗». Author William Harmon Norton



1 ... 28 29 30 31 32 33 34 35 36 ... 53
Go to page:
them beneath showers of stones and ashes.

Near the edge of the area lies Death Gulch, in which carbon dioxide is given off in such quantities that in quiet weather it accumulates in a heavy layer along the ground and suffocates the animals which may enter it.

CHAPTER XII UNDERGROUND STRUCTURES OF IGNEOUS ORIGIN

It is because long-continued erosion lays bare the innermost anatomy of an extinct volcano, and even sweeps away the entire pile with much of the underlying strata, thus leaving the very roots of the volcano open to view, that we are able to study underground volcanic structures. With these we include, for convenience, intrusions of molten rock which have been driven upward into the crust, but which may not have succeeded in breaking way to the surface and establishing a volcano. All these structures are built of rock forced when in a fluid or pasty state into some cavity which it has found or made, and we may classify them therefore, according to the shape of the molds in which the molten rock has congealed, as (1) dikes, (2) volcanic necks, (3) intrusive sheets, and (4) intrusive masses.

DIKES. The sheet of once molten rock with which a fissure has been filled is known as a dike. Dikes are formed when volcanic cones are rent by explosions or by the weight of the lava column in the duct, and on the dissection of the pile they appear as radiating vertical ribs cutting across the layers of lava and tuff of which the cone is built. In regions undergoing deformation rocks lying deep below the ground are often broken and the fissures are filled with molten rock from beneath, which finds no outlet to the surface. Such dikes are common in areas of the most ancient rocks, which have been brought to light by long erosion.

In exceptional cases dikes may reach the length of fifty or one hundred miles. They vary in width from a fraction of a foot to even as much as three hundred feet.

Dikes are commonly more fine of grain on the sides than in the center, and may have a glassy and crackled surface where they meet the inclosing rock. Can you account for this on any principle which you have learned?

VOLCANIC NECKS. The pipe of a volcano rises from far below the base of the cone,—from the deep reservoir from which its eruptions are supplied. When the volcano has become extinct this great tube remains filled with hardened lava. It forms a cylindrical core of solid rock, except for some distance below the ancient crater, where it may contain a mass of fragments which had fallen back into the chimney after being hurled into the air.

As the mountain is worn down, this central column known as the VOLCANIC NECK is left standing as a conical hill (Fig. 240). Even when every other trace of the volcano has been swept away, erosion will not have passed below this great stalk on which the volcano was borne as a fiery flower whose site it remains to mark. In volcanic regions of deep denudation volcanic necks rise solitary and abrupt from the surrounding country as dome-shaped hills. They are marked features in the landscape in parts of Scotland and in the St. Lawrence valley about Montreal (Fig. 241).

INTRUSIVE SHEETS. Sheets of igneous rocks are sometimes found interleaved with sedimentary strata, especially in regions where the rocks have been deformed and have suffered from volcanic action. In some instances such a sheet is seen to be CONTEMPORANEOUS (p. 248). In other instances the sheet must be INTRUSIVE. The overlying stratum, as well as that beneath, has been affected by the heat of the once molten rock. We infer that the igneous rock when in a molten state was forced between the strata, much as a card may be pushed between the leaves of a closed book. The liquid wedged its way between the layers, lifting those above to make room for itself. The source of the intrusive sheet may often be traced to some dike (known therefore as the FEEDING DIKE), or to some mass of igneous rock.

Intrusive sheets may extend a score and more of miles, and, like the longest surface flows, the most extensive sheets consist of the more fusible and fluid lavas,—those of the basic class of which basalt is an example. Intrusive sheets are usually harder than the strata in which they lie and are therefore often left in relief after long denudation of the region (Fig. 315).

On the west bank of the Hudson there extends from New York Bay north for thirty miles a bold cliff several hundred feet high,— the PALISADES OF THE HUDSON. It is the outcropping edge of a sheet of ancient igneous rock, which rests on stratified sandstones and is overlain by strata of the same series. Sandstones and lava sheet together dip gently to the west arid the latter disappears from view two miles back from the river.

It is an interesting question whether the Palisades sheet is CONTEMPORANEOUS or INTRUSIVE. Was it outpoured on the sandstones beneath it when they formed the floor of the sea, and covered forthwith by the sediments of the strata above, or was it intruded among these beds at a later date?

The latter is the case: for the overlying stratum is intensely baked along the zone of contact. At the west edge of the sheet is found the dike in which the lava rose to force its way far and wide between the strata.

ELECTRIC PEAK, one of the prominent mountains of the Yellowstone National Park, is carved out of a mass of strata into which many sheets of molten rock have been intruded. The western summit consists of such a sheet several hundred feet thick. Studying the section of Figure 244, what inference do you draw as to the source of these intrusive sheets?

INTRUSIVE MASSES

BOSSES. This name is generally applied to huge irregular masses of coarsely crystalline igneous rock lying in the midst of other formations. Bosses vary greatly in size and may reach scores of miles in extent. Seldom are there any evidences found that bosses ever had connection with the surface. On the other hand, it is often proved that they have been driven, or have melted their way, upward into the formations in which they lie; for they give off dikes and intrusive sheets, and have profoundly altered the rocks about them by their heat.

The texture of the rock of bosses proves that consolidation proceeded slowly and at great depths, and it is only because of vast denudation that they are now exposed to view. Bosses are commonly harder than the rocks about them, and stand up, therefore, as rounded hills and mountainous ridges long after the surrounding country has worn to a low plain.

The base of bosses is indefinite or undetermined, and in this respect they differ from laccoliths. Some bosses have broken and faulted the overlying beds; some have forced the rocks aside and melted them away.

The SPANISH PEAKS of southeastern Colorado were formed by the upthrust of immense masses of igneous rock, bulging and breaking the overlying strata. On one side of the mountains the throw of the fault is nearly a mile, and fragments of deep-lying beds were dragged upward by the rising masses. The adjacent rocks were altered by heat to a distance of several thousand feet. No evidence appears that the molten rock ever reached the surface, and if volcanic eruptions ever took place either in lava flows or fragmental materials, all traces of them have been effaced. The rock of the intrusive masses is coarsely crystalline, and no doubt solidified slowly under the pressure of vast thicknesses of overlying rock, now mostly removed by erosion.

A magnificent system of dikes radiates from the Peaks to a distance of fifteen miles, some now being left by long erosion as walls a hundred feet in height (Fig. 239). Intrusive sheets fed by the dikes penetrate the surrounding strata, and their edges are cut by canyons as much as twenty-five miles from the mountain. In these strata are valuable beds of lignite, an imperfect coal, which the heat of dikes and sheets has changed to coke.

LACCOLITHS. The laccolith (Greek laccos, cistern; lithos, stone) is a variety of intrusive masses in which molten rock has spread between the strata, and, lifting the strata above it to a dome- shaped form, has collected beneath them in a lens-shaped body with a flat base.

The HENRY MOUNTAINS, a small group of detached peaks in southern Utah, rise from a plateau of horizontal rocks. Some of the peaks are carved wholly in separate domelike uplifts of the strata of the plateau. In others, as Mount Hillers, the largest of the group, there is exposed on the summit a core of igneous rock from which the sedimentary rocks of the flanks dip steeply outward in all directions. In still others erosion has stripped off the covering strata and has laid bare the core to its base; and its shape is here seen to be that of a plano-convex lens or a baker's bun, its flat base resting on the undisturbed bedded rocks beneath. The structure of Mount Hillers is shown in Figure 248. The nucleus of igneous rock is four miles in diameter and more than a mile in depth.

REGIONAL INTRUSIONS. These vast bodies of igneous rock, which may reach hundreds of miles in diameter, differ little from bosses except in their immense bulk. Like bosses, regional intrusions give off dikes and sheets and greatly change the rocks about them by their heat. They are now exposed to view only because of the profound denudation which has removed the upheaved dome of rocks beneath which they slowly cooled. Such intrusions are accompanied —whether as cause or as effect is still hardly known—by deformations, and their masses of igneous rock are thus found as the core of many great mountain ranges. The granitic masses of which the Bitter Root Mountains and the Sierra Nevadas have been largely carved are each more than three hundred miles in length. Immense regional intrusions, the cores of once lofty mountain ranges, are found upon the Laurentian peneplain.

PHYSIOGRAPHIC EFFECTS OF INTRUSIVE MASSES. We have already seen examples of the topographic effects of intrusive masses in Mount Hillers, the Spanish Peaks, and in the great mountain ranges mentioned in the paragraph on regional intrusions, although in the latter instances these effects are entangled with the effects of other processes. Masses of igneous rock cannot be intruded within the crust without an accompanying deformation on a scale corresponding to the bulk of the intruded mass. The overlying strata are arched into hills or mountains, or, if the molten material is of great extent, the strata may conceivably be floated upward to the height of a plateau. We may suppose that the transference of molten matter from one region to another may be among the causes of slow subsidences and elevations. Intrusions give rise to fissures, dikes, and intrusive sheets, and these dislocations cannot fail to produce earthquakes. Where intrusive masses open communication with the surface, volcanoes are established or fissure eruptions occur such as those of Iceland.

THE INTRUSIVE ROCKS

The igneous rocks are divided into two general classes,—the VOLCANIC or ERUPTIVE rocks, which have been outpoured in open air or on the floor of the sea, and the INTRUSIVE rocks, which have been intruded within the rocks of the crust and have solidified below the surface. The two classes are alike in chemical composition and may be divided into acidic and basic groups. In texture the intrusive rocks differ from the volcanic rocks because of the different conditions under which they have solidified. They cooled far more slowly beneath the cover of the rocks into which they were pressed than is permitted to lava flows in open air. Their constituent minerals had ample opportunity to sort themselves and crystallize from the fluid mixture, and none of that mixture was left to congeal as a glassy paste.

They consolidated also under pressure. They are never scoriaceous, for the steam with which they were charged was not allowed to expand and distend them with steam blebs. In the rocks of the larger intrusive masses one may see with a powerful microscope exceedingly minute cavities, to be counted by many millions to the cubic inch, in which the gaseous water which the mass contained was held imprisoned under the immense pressure of the overlying rocks.

Naturally these characteristics are best developed in the intrusives which cooled most slowly, i.e. in the deepest-seated and largest masses; while in those which cooled more rapidly, as in dikes and sheets, we find gradations approaching the texture of surface flows.

VARIETIES OF THE INTRUSIVE ROCKS. We will now describe a few of the varieties of rocks of deep-seated intrusions. All are even grained, consisting of a mass of crystalline grains formed during one

1 ... 28 29 30 31 32 33 34 35 36 ... 53
Go to page:

Free e-book «The Elements of Geology, William Harmon Norton [e textbook reader TXT] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment