readenglishbook.com » Science » Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗

Book online «Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗». Author Henry Ernest Dudeney



1 ... 33 34 35 36 37 38 39 40 41 ... 87
Go to page:
giving five for the additions. They are: —
(1—0) (0—0) (0—2) (2—1) (1—3) (4—0) (0—0) (0—2) (2—1) (1—0) (2—0) (0—0) (0—1) (1—3) (3—0)

Now, how many similar arrangements are there of five dominoes that shall give six instead of five in the two additions?

380.—THE DOMINO FRAME PUZZLE.

It will be seen in the illustration that the full set of twenty-eight dominoes is arranged in the form of a square frame, with 6 against 6, 2 against 2, blank against blank, and so on, as in the game. It will be found that the pips in the top row and left-hand column both add up 44. The pips in the other two sides sum to 59 and 32 respectively. The puzzle is to rearrange the dominoes in the same form so that all of the four sides shall sum to 44. Remember that the dominoes must be correctly placed one against another as in the game.

381.—THE CARD FRAME PUZZLE.

In the illustration we have a frame constructed from the ten playing cards, ace to ten of diamonds. The children who made it wanted the pips on all four sides to add up alike, but they failed in their attempt and gave it up as impossible. It will be seen that the pips in the top row, the bottom row, and the left-hand side all add up 14, but the right-hand side sums to 23. Now, what they were trying to do is quite possible. Can you rearrange the ten cards in the same formation so that all four sides shall add up alike? Of course they need not add up 14, but any number you choose to select.

382.—THE CROSS OF CARDS.

In this case we use only nine cards—the ace to nine of diamonds. The puzzle is to arrange them in the form of a cross, exactly in the way shown in the illustration, so that the pips in the vertical bar and in the horizontal bar add up alike. In the example given it will be found that both directions add up 23. What I want to know is, how many different ways are there of rearranging the cards in order to bring about this result? It will be seen that, without affecting the solution, we may exchange the 5 with the 6, the 5 with the 7, the 8 with the 3, and so on. Also we may make the horizontal and the vertical bars change places. But such obvious manipulations as these are not to be regarded as different solutions. They are all mere variations of one fundamental solution. Now, how many of these fundamentally different solutions are there? The pips need not, of course, always add up 23.

383.—THE "T" CARD PUZZLE.

An entertaining little puzzle with cards is to take the nine cards of a suit, from ace to nine inclusive, and arrange them in the form of the letter "T," as shown in the illustration, so that the pips in the horizontal line shall count the same as those in the column. In the example given they add up twenty-three both ways. Now, it is quite easy to get a single correct arrangement. The puzzle is to discover in just how many different ways it may be done. Though the number is high, the solution is not really difficult if we attack the puzzle in the right manner. The reverse way obtained by reflecting the illustration in a mirror we will not count as different, but all other changes in the relative positions of the cards will here count. How many different ways are there?

384.—CARD TRIANGLES.

Here you pick out the nine cards, ace to nine of diamonds, and arrange them in the form of a triangle, exactly as shown in the illustration, so that the pips add up the same on the three sides. In the example given it will be seen that they sum to 20 on each side, but the particular number is of no importance so long as it is the same on all three sides. The puzzle is to find out in just how many different ways this can be done.

If you simply turn the cards round so that one of the other two sides is nearest to you this will not count as different, for the order will be the same. Also, if you make the 4, 9, 5 change places with the 7, 3, 8, and at the same time exchange the 1 and the 6, it will not be different. But if you only change the 1 and the 6 it will be different, because the order round the triangle is not the same. This explanation will prevent any doubt arising as to the conditions.

385.—"STRAND" PATIENCE.

The idea for this came to me when considering the game of Patience that I gave in the Strand Magazine for December, 1910, which has been reprinted in Ernest Bergholt's Second Book of Patience Games, under the new name of "King Albert."

Make two piles of cards as follows: 9 D, 8 S, 7 D, 6 S, 5 D, 4 S, 3 D, 2 S, 1 D, and 9 H, 8 C, 7 H, 6 C, 5 H, 4 C, 3 H, 2 C, 1 H, with the 9 of diamonds at the bottom of one pile and the 9 of hearts at the bottom of the other. The point is to exchange the spades with the clubs, so that the diamonds and clubs are still in numerical order in one pile and the hearts and spades in the other. There are four vacant spaces in addition to the two spaces occupied by the piles, and any card may be laid on a space, but a card can only be laid on another of the next higher value—an ace on a two, a two on a three, and so on. Patience is required to discover the shortest way of doing this. When there are four vacant spaces you can pile four cards in seven moves, with only three spaces you can pile them in nine moves, and with two spaces you cannot pile more than two cards. When you have a grasp of these and similar facts you will be able to remove a number of cards bodily and write down 7, 9, or whatever the number of moves may be. The gradual shortening of play is fascinating, and first attempts are surprisingly lengthy.

386.—A TRICK WITH DICE.

Here is a neat little trick with three dice. I ask you to throw the dice without my seeing them. Then I tell you to multiply the points of the first die by 2 and add 5; then multiply the result by 5 and add the points of the second die; then multiply the result by 10 and add the points of the third die. You then give me the total, and I can at once tell you the points thrown with the three dice. How do I do it? As an example, if you threw 1, 3, and 6, as in the illustration, the result you would give me would be 386, from which I could at once say what you had thrown.

387.—THE VILLAGE CRICKET MATCH.

In a cricket match, Dingley Dell v. All Muggleton, the latter had the first innings. Mr. Dumkins and Mr. Podder were at the wickets, when the wary Dumkins made a splendid late cut, and Mr. Podder called on him to run. Four runs were apparently completed, but the vigilant umpires at each end called, "three short," making six short runs in all. What number did Mr. Dumkins score? When Dingley Dell took their turn at the wickets their champions were Mr. Luffey and Mr. Struggles. The latter made a magnificent off-drive, and invited his colleague to "come along," with the result that the observant spectators applauded them for what was supposed to have been three sharp runs. But the umpires declared that there had been two short runs at each end—four in all. To what extent, if any, did this manœuvre increase Mr. Struggles's total?

388.—SLOW CRICKET.

In the recent county match between Wessex and Nincomshire the former team were at the wickets all day, the last man being put out a few minutes before the time for drawing stumps. The play was so slow that most of the spectators were fast asleep, and, on being awakened by one of the officials clearing the ground, we learnt that two men had been put out leg-before-wicket for a combined score of 19 runs; four men were caught for a combined score or 17 runs; one man was run out for a duck's egg; and the others were all bowled for 3 runs each. There were no extras. We were not told which of the men was the captain, but he made exactly 15 more than the average of his team. What was the captain's score?

389.—THE FOOTBALL PLAYERS.

"It is a glorious game!" an enthusiast was heard to exclaim. "At the close of last season, of the footballers of my acquaintance four had broken their left arm, five had broken their right arm, two had the right arm sound, and three had sound left arms." Can you discover from that statement what is the smallest number of players that the speaker could be acquainted with?

It does not at all follow that there were as many as fourteen men, because, for example, two of the men who had broken the left arm might also be the two who had sound right arms.

390.—THE HORSE-RACE PUZZLE.

There are no morals in puzzles. When we are solving the old puzzle of the captain who, having to throw half his crew overboard in a storm, arranged to draw lots, but so placed the men that only the Turks were sacrificed, and all the Christians left on board, we do not stop to discuss the questionable morality of the proceeding. And when we are dealing with a measuring problem, in which certain thirsty pilgrims are to make an equitable division of a barrel of beer, we do not object that, as total abstainers, it is against our conscience to have anything to do with intoxicating liquor. Therefore I make no apology for introducing a puzzle that deals with betting.

Three horses—Acorn, Bluebottle, and Capsule—start in a race. The odds are 4 to 1, Acorn; 3 to 1, Bluebottle; 2 to 1, Capsule. Now, how much must I invest on each horse in order to win £13, no matter which horse comes in first? Supposing, as an example, that I betted £5 on each horse. Then, if Acorn won, I should receive £20 (four times £5), and have to pay £5 each for the other two horses; thereby winning £10. But it will be found that if Bluebottle was first I should only win £5, and if Capsule won I should gain nothing and lose nothing. This will make the question perfectly clear to the novice, who, like myself, is not interested in the calling of the fraternity who profess to be engaged in the noble task of "improving the breed of horses."

391.—THE MOTOR-CAR RACE.

Sometimes a quite simple statement of fact, if worded in an unfamiliar manner, will cause considerable perplexity. Here is an example, and it will doubtless puzzle some of my more youthful readers just

1 ... 33 34 35 36 37 38 39 40 41 ... 87
Go to page:

Free e-book «Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment