readenglishbook.com » Science » The Chemical History of a Candle, Michael Faraday [best romance novels of all time txt] 📗

Book online «The Chemical History of a Candle, Michael Faraday [best romance novels of all time txt] 📗». Author Michael Faraday



1 2 3 4 5 6 7 8 9 10 ... 22
Go to page:
having plenty of air mixed with it before it burns; and if I raise the gauze, you see it does not burn below[10]. There is plenty of carbon in the gas; but, because the atmosphere can get to it, and mix with it before it burns, you see how pale and blue the flame is. And if I blow upon a bright gas-flame, so as to consume all this carbon before it gets heated to the glowing point, it will also burn blue: [The Lecturer illustrated his remarks by blowing on the gas-light.] The only reason why I have not the same bright light when I thus blow upon the flame is, that the carbon meets with sufficient air to burn it before it gets separated in the flame in a free state. The difference is solely due to the solid particles not being separated before the gas is burnt.

You observe that there are certain products as the result of the combustion of a candle, and that of these products one portion may be considered as charcoal, or soot; that charcoal, when afterwards burnt, produces some other product; and it concerns us very much now to ascertain what that other product is. We shewed that something was going away; and I want you now to understand how much is going up into the air; and for that purpose we will have combustion on a little larger scale. From that candle ascends heated air, and two or three experiments will shew you the ascending current; but, in order to give you a notion of the quantity of matter which ascends in this way, I will make an experiment by which I shall try to imprison some of the products of this combustion. For this purpose I have here what boys call a fire-balloon. I use this fire-balloon merely as a sort of measure of the result of the combustion we are considering; and I am about to make a flame in such an easy and simple manner as shall best serve my present purpose. This plate shall be the "cup," we will so say, of the candle; this spirit shall be our fuel; and I am about to place this chimney over it, because it is better for me to do so than to let things proceed at random.

[Illustration: Fig. 10.]

Mr. Anderson will now light the fuel, and here at the top we shall get the results of the combustion. What we get at the top of that tube is exactly the same, generally speaking, as you get from the combustion of a candle; but we do not get a luminous flame here, because we use a substance which is feeble in carbon. I am about to put this balloon—not into action, because that is not my object—but to shew you the effect which results from the action of those products which arise from the candle, as they arise here from the furnace. [The balloon was held over the chimney, when it immediately commenced to fill.] You see how it is disposed to ascend; but we must not let it up, because it might come in contact with those upper gas-lights, and that would be very inconvenient. [The upper gas-lights were turned out, at the request of the Lecturer, and the balloon was allowed to ascend.] Does not that shew you what a large bulk of matter is being evolved? Now, there is going through this tube [placing a large glass tube over a candle] all the products of that candle, and you will presently see that the tube will become quite opaque. Suppose I take another candle, and place it under a jar, and then put a light on the other side, just to shew you what is going on. You see that the sides of the jar become cloudy, and the light begins to burn feebly. It is the products, you see, which make the light so dim, and this is the same thing which makes the sides of the jar so opaque. If you go home and take a spoon that has been in the cold air, and hold it over a candle—not so as to soot it—you will find that it becomes dim, just as that jar is dim. If you can get a silver dish, or something of that kind, you will make the experiment still better. And now, just to carry your thoughts forward to the time we shall next meet, let me tell you that it is water which causes the dimness; and when we next meet. I will shew you that we can make it, without difficulty, assume the form of a liquid.

LECTURE III. PRODUCTS: WATER FROM THE COMBUSTION—NATURE OF WATER—A COMPOUND—HYDROGEN.

I dare say you will remember that when we parted we had just mentioned the word "products" from the candle. For when a candle burns we found we were able, by nice adjustment, to get various products from it. There was one substance which was not obtained when the candle was burning properly, which was charcoal or smoke; and there was some other substance that went upwards from the flame which did not appear as smoke, but took some other form, and made part of that general current which, ascending from the candle upwards, becomes invisible, and escapes. There were also other products to mention. You remember that in that rising current having its origin at the candle, we found that one part was condensable against a cold spoon, or against a clean plate, or any other cold thing, and another part was incondensable.

We will first take the condensable part, and examine it; and, strange to say, we find that that part of the product is just water—nothing but water. On the last occasion I spoke of it incidentally, merely saying that water was produced among the condensable products of the candle; but to-day I wish to draw your attention to water, that we may examine it carefully, especially in relation to this subject, and also with respect to its general existence on the surface of the globe.

Now, having previously arranged an experiment for the purpose of condensing water from the products of the candle, my next point will be to shew you this water; and perhaps one of the best means that I can adopt for shewing its presence to so many at once, is to exhibit a very visible action of water, and then to apply that test to what is collected as a drop at the bottom of that vessel. I have here a chemical substance, discovered by Sir Humphrey Davy, which has a very energetic action upon water, which I shall use as a test of the presence of water. If I take a little piece of it—it is called potassium, as coming from potash,—if I take a little piece of it, and throw it into that basin, you see how it shews the presence of water by lighting up and floating about, burning with a violent flame. I am now going to take away the candle which has been burning beneath the vessel containing ice and salt, and you see a drop of water—a condensed product of the candle—hanging from under the surface of the dish.

[Illustration: Fig. 11.]

I will shew you that potassium has the same action upon it as upon the water in that basin in the experiment we have just tried. See, it takes fire, and burns in just the same manner. I will take another drop upon this glass slab, and when I put the potassium on to it, you see at once, from its taking fire, that there is water present. Now, that water was produced by the candle. In the same manner, if I put this spirit-lamp under that jar, you will soon see the latter become damp, from the dew which is deposited upon it—that dew being the result of combustion; and I have no doubt you will shortly see by the drops of water which fall upon the paper below, that there is a good deal of water produced from the combustion of the lamp. I will let it remain, and you can afterwards see how much water has been collected. So, if I take a gas-lamp, and put any cooling arrangement over it, I shall get water—water being likewise produced from the combustion of gas. Here, in this bottle, is a quantity of water—perfectly pure, distilled water, produced from the combustion of a gas-lamp—in no point different from the water that you distil from the river, or ocean, or spring, but exactly the same thing. Water is one individual thing—it never changes. We can add to it by careful adjustment, for a little while, or we can take it apart, and get other things from it; but water, as water, remains always the same, either in a solid, liquid, or fluid state. Here, again [holding another bottle], is some water produced by the combustion of an oil-lamp. A pint of oil, when burnt fairly and properly, produces rather more than a pint of water. Here, again, is some water, produced by a rather long experiment from a wax candle. And so we can go on with almost all combustible substances, and find that if they burn with a flame, as a candle, they produce water. You may make these experiments yourselves. The head of a poker is a very good thing to try with, and if it remains cold long enough over the candle, you may get water condensed in drops on it; or a spoon or ladle, or anything else may be used, provided it be clean, and can carry off the heat, and so condense the water.

And now—to go into the history of this wonderful production of water from combustibles, and by combustion—I must first of all tell you that this water may exist in different conditions; and although you may now be acquainted with all its forms, they still require us to give a little attention to them for the present, so that we may perceive how the water, whilst it goes through its Protean changes, is entirely and absolutely the same thing, whether it is produced from a candle, by combustion, or from the rivers or ocean.

First of all, water, when at the coldest, is ice. Now, we philosophers—-I hope that I may class you and myself together in this case—speak of water as water, whether it be in its solid, or liquid, or gaseous state,—we speak of it chemically as water. Water is a thing compounded of two substances, one of which we have derived from the candle, and the other we shall find elsewhere. Water may occur as ice; and you have had most excellent opportunities lately of seeing this. Ice changes back into water—for we had on our last Sabbath a strong instance of this change, by the sad catastrophe which occurred in our own house, as well as in the houses of many of our friends,—ice changes back into water when the temperature is raised: water also changes into steam when it is warmed enough. The water which we have here before us is in its densest state[11], and although it changes in weight, in condition, in form, and in many other qualities, it still is water; and whether we alter it into ice by cooling, or whether we change it into steam by heat, it increases in volume,—in the one case very strangely and powerfully, and in the other case very largely and wonderfully. For instance, I will now take this tin cylinder, and pour a little water into it; and seeing how much water I pour in, you may easily estimate for yourselves how high it will rise in the vessel: it will cover the bottom about two inches. I am now about to convert the water into steam, for the purpose of shewing to you the different volumes which water occupies in its different states of water and steam.

Let us now take the case of water changing into ice: we can effect that by cooling it in a mixture of salt and pounded ice[12]; and I shall do so to shew you the expansion of water into a thing of larger bulk when it is so changed. These bottles [holding one] are made of strong cast iron, very strong and very thick—I suppose they are the third of an inch in thickness; they are very carefully filled with water, so as to exclude all air, and then they are screwed down tight. We shall see that when we freeze the water in these iron vessels, they will not be able to hold the ice, and the expansion within them will break them in pieces as these [pointing to some fragments] are broken, which have been bottles of exactly

1 2 3 4 5 6 7 8 9 10 ... 22
Go to page:

Free e-book «The Chemical History of a Candle, Michael Faraday [best romance novels of all time txt] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment