readenglishbook.com » Science » Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗

Book online «Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗». Author Henry Ernest Dudeney



1 ... 3 4 5 6 7 8 9 10 11 ... 87
Go to page:
beach acted as judges, but, as the donkeys were familiar acquaintances and declined to part company the whole way, a dead heat was unavoidable. However, the judges, being stationed at different points on the course, which was marked off in quarter-miles, noted the following results:—The first three-quarters were run in six and three-quarter minutes, the first half-mile took the same time as the second half, and the third quarter was run in exactly the same time as the last quarter. From these results Mr. Dobson amused himself in discovering just how long it took those two donkeys to run the whole mile. Can you give the answer?

74.—THE BASKET OF POTATOES.

A man had a basket containing fifty potatoes. He proposed to his son, as a little recreation, that he should place these potatoes on the ground in a straight line. The distance between the first and second potatoes was to be one yard, between the second and third three yards, between the third and fourth five yards, between the fourth and fifth seven yards, and so on—an increase of two yards for every successive potato laid down. Then the boy was to pick them up and put them in the basket one at a time, the basket being placed beside the first potato. How far would the boy have to travel to accomplish the feat of picking them all up? We will not consider the journey involved in placing the potatoes, so that he starts from the basket with them all laid out.

75.—THE PASSENGER'S FARE.

At first sight you would hardly think there was matter for dispute in the question involved in the following little incident, yet it took the two persons concerned some little time to come to an agreement. Mr. Smithers hired a motor-car to take him from Addleford to Clinkerville and back again for £3. At Bakenham, just midway, he picked up an acquaintance, Mr. Tompkins, and agreed to take him on to Clinkerville and bring him back to Bakenham on the return journey. How much should he have charged the passenger? That is the question. What was a reasonable fare for Mr. Tompkins?

DIGITAL PUZZLES.

"Nine worthies were they called."
DRYDEN: The Flower and the Leaf.

I give these puzzles, dealing with the nine digits, a class to themselves, because I have always thought that they deserve more consideration than they usually receive. Beyond the mere trick of "casting out nines," very little seems to be generally known of the laws involved in these problems, and yet an acquaintance with the properties of the digits often supplies, among other uses, a certain number of arithmetical checks that are of real value in the saving of labour. Let me give just one example—the first that occurs to me.

If the reader were required to determine whether or not 15,763,530,163,289 is a square number, how would he proceed? If the number had ended with a 2, 3, 7, or 8 in the digits place, of course he would know that it could not be a square, but there is nothing in its apparent form to prevent its being one. I suspect that in such a case he would set to work, with a sigh or a groan, at the laborious task of extracting the square root. Yet if he had given a little attention to the study of the digital properties of numbers, he would settle the question in this simple way. The sum of the digits is 59, the sum of which is 14, the sum of which is 5 (which I call the "digital root"), and therefore I know that the number cannot be a square, and for this reason. The digital root of successive square numbers from 1 upwards is always 1, 4, 7, or 9, and can never be anything else. In fact, the series, 1, 4, 9, 7, 7, 9, 4, 1, 9, is repeated into infinity. The analogous series for triangular numbers is 1, 3, 6, 1, 6, 3, 1, 9, 9. So here we have a similar negative check, for a number cannot be triangular (that is, (n²+n)/2) if its digital root be 2, 4, 5, 7, or 8.

76.—THE BARREL OF BEER.

A man bought an odd lot of wine in barrels and one barrel containing beer. These are shown in the illustration, marked with the number of gallons that each barrel contained. He sold a quantity of the wine to one man and twice the quantity to another, but kept the beer to himself. The puzzle is to point out which barrel contains beer. Can you say which one it is? Of course, the man sold the barrels just as he bought them, without manipulating in any way the contents.

77.—DIGITS AND SQUARES.

It will be seen in the diagram that we have so arranged the nine digits in a square that the number in the second row is twice that in the first row, and the number in the bottom row three times that in the top row. There are three other ways of arranging the digits so as to produce the same result. Can you find them?

78.—ODD AND EVEN DIGITS.

The odd digits, 1, 3, 5, 7, and 9, add up 25, while the even figures, 2, 4, 6, and 8, only add up 20. Arrange these figures so that the odd ones and the even ones add up alike. Complex and improper fractions and recurring decimals are not allowed.

79—THE LOCKERS PUZZLE.

A man had in his office three cupboards, each containing nine lockers, as shown in the diagram. He told his clerk to place a different one-figure number on each locker of cupboard A, and to do the same in the case of B, and of C. As we are here allowed to call nought a digit, and he was not prohibited from using nought as a number, he clearly had the option of omitting any one of ten digits from each cupboard.

Now, the employer did not say the lockers were to be numbered in any numerical order, and he was surprised to find, when the work was done, that the figures had apparently been mixed up indiscriminately. Calling upon his clerk for an explanation, the eccentric lad stated that the notion had occurred to him so to arrange the figures that in each case they formed a simple addition sum, the two upper rows of figures producing the sum in the lowest row. But the most surprising point was this: that he had so arranged them that the addition in A gave the smallest possible sum, that the addition in C gave the largest possible sum, and that all the nine digits in the three totals were different. The puzzle is to show how this could be done. No decimals are allowed and the nought may not appear in the hundreds place.

80.—THE THREE GROUPS.

There appeared in "Nouvelles Annales de Mathématiques" the following puzzle as a modification of one of my "Canterbury Puzzles." Arrange the nine digits in three groups of two, three, and four digits, so that the first two numbers when multiplied together make the third. Thus, 12 × 483 = 5,796. I now also propose to include the cases where there are one, four, and four digits, such as 4 × 1,738 = 6,952. Can you find all the possible solutions in both cases?

81.—THE NINE COUNTERS.

I have nine counters, each bearing one of the nine digits, 1, 2, 3, 4, 5, 6, 7, 8 and 9. I arranged them on the table in two groups, as shown in the illustration, so as to form two multiplication sums, and found that both sums gave the same product. You will find that 158 multiplied by 23 is 3,634, and that 79 multiplied by 46 is also 3,634. Now, the puzzle I propose is to rearrange the counters so as to get as large a product as possible. What is the best way of placing them? Remember both groups must multiply to the same amount, and there must be three counters multiplied by two in one case, and two multiplied by two counters in the other, just as at present.

82.—THE TEN COUNTERS.

In this case we use the nought in addition to the 1, 2, 3, 4, 5, 6, 7, 8, 9. The puzzle is, as in the last case, so to arrange the ten counters that the products of the two multiplications shall be the same, and you may here have one or more figures in the multiplier, as you choose. The above is a very easy feat; but it is also required to find the two arrangements giving pairs of the highest and lowest products possible. Of course every counter must be used, and the cipher may not be placed to the left of a row of figures where it would have no effect. Vulgar fractions or decimals are not allowed.

83.—DIGITAL MULTIPLICATION.

Here is another entertaining problem with the nine digits, the nought being excluded. Using each figure once, and only once, we can form two multiplication sums that have the same product, and this may be done in many ways. For example, 7x658 and 14x329 contain all the digits once, and the product in each case is the same—4,606. Now, it will be seen that the sum of the digits in the product is 16, which is neither the highest nor the lowest sum so obtainable. Can you find the solution of the problem that gives the lowest possible sum of digits in the common product? Also that which gives the highest possible sum?

84.—THE PIERROT'S PUZZLE.

The Pierrot in the illustration is standing in a posture that represents the sign of multiplication. He is indicating the peculiar fact that 15 multiplied by 93 produces exactly the same figures (1,395), differently arranged. The puzzle is to take any four digits you like (all different) and similarly arrange them so that the number formed on one side of the Pierrot when multiplied by the number on the other side shall produce the same figures. There are very few ways of doing it, and I shall give all the cases possible. Can you find them all? You are allowed to put two figures on each side of the Pierrot as in the example shown, or to place a single figure on one side and three figures on the other. If we only used three digits instead of four, the only possible ways are these: 3 multiplied by 51 equals 153, and 6 multiplied by 21 equals 126.

85.—THE CAB NUMBERS.

A London policeman one night saw two cabs drive off in opposite directions under suspicious circumstances. This officer was a particularly careful and wide-awake man, and he took out his pocket-book to make an entry of the numbers of the cabs, but discovered that he had lost his pencil. Luckily, however, he found a small piece of chalk, with which he marked the two numbers on the gateway of a wharf close by. When he returned to the same spot on his beat he stood and looked again at the numbers, and noticed this peculiarity, that all the nine digits (no nought) were used and that no figure was repeated, but that if he multiplied the two numbers together they again produced the nine digits, all once, and once only. When one of the clerks arrived at the wharf in the early

1 ... 3 4 5 6 7 8 9 10 11 ... 87
Go to page:

Free e-book «Amusements in Mathematics, Henry Ernest Dudeney [books to read to be successful txt] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment