Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗
- Author: Charles Robert Darwin
Book online «Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗». Author Charles Robert Darwin
and this part is entirely composed of volcanic rocks. Near the coast there are several varieties of basalt, some abounding with large crystals of augite and tarnished olivine, others compact and earthy,--some slightly vesicular, and others occasionally amygdaloidal. These rocks are generally much decomposed, and to my surprise, I found in several sections that it was impossible to distinguish, even approximately, the line of separation between the decayed lava and the alternating beds of tuff. Since the specimens have become dry, it is rather more easy to distinguish the decomposed igneous rocks from the sedimentary tuffs. This gradation in character between rocks having such widely different origins, may I think be explained by the yielding under pressure of the softened sides of the vesicular cavities, which in many volcanic rocks occupy a large proportion of their bulk. As the vesicles generally increase in size and number in the upper parts of a stream of lava, so would the effects of their compression increase; the yielding, moreover, of each lower vesicle must tend to disturb all the softened matter above it. Hence we might expect to trace a perfect gradation from an unaltered crystalline rock to one in which all the particles (although originally forming part of the same solid mass) had undergone mechanical displacement; and such particles could hardly be distinguished from others of similar composition, which had been deposited as sediment. As lavas are sometimes laminated in their upper parts even horizontal lines, appearing like those of aqueous deposition, could not in all cases be relied on as a criterion of sedimentary origin. From these considerations it is not surprising that formerly many geologists believed in real transitions from aqueous deposits, through wacke, into igneous traps.
In the valley of Tia-auru, the commonest rocks are basalts with much olivine, and in some cases almost composed of large crystals of augite. I picked up some specimens, with much glassy feldspar, approaching in character to trachyte. There were also many large blocks of vesicular basalt, with the cavities beautifully lined with chabasie (?), and radiating bundles of mesotype. Some of these specimens presented a curious appearance, owing to a number of the vesicles being half filled up with a white, soft, earthy mesotypic mineral, which intumesced under the blowpipe in a remarkable manner. As the upper surfaces in all the half-filled cells are exactly parallel, it is evident that this substance has sunk to the bottom of each cell from its weight. Sometimes, however, it entirely fills the cells. Other cells are either quite filled, or lined, with small crystals, apparently of chabasie; these crystals, also, frequently line the upper half of the cells partly filled with the earthy mineral, as well as the upper surface of this substance itself, in which case the two minerals appear to blend into each other. I have never seen any other amygdaloid with the cells half filled in the manner here described; and it is difficult to imagine the causes which determined the earthy mineral to sink from its gravity to the bottom of the cells, and the crystalline mineral to adhere in a coating of equal thickness round the sides of the cells. (MacCulloch, however, has described and given a plate of ("Geolog. Trans." 1st series volume 4 page 225) a trap rock, with cavities filled up horizontally with quartz and chalcedony. The upper halves of these cavities are often filled by layers, which follow each irregularity of the surface, and by little depending stalactites of the same siliceous substances.)
The basic strata on the sides of the valley are gently inclined seaward, and I nowhere observed any sign of disturbance; the strata are separated from each other by thick, compact beds of conglomerate, in which the fragments are large, some being rounded, but most angular. From the character of these beds, from the compact and crystalline condition of most of the lavas, and from the nature of the infiltrated minerals, I was led to conjecture that they had originally flowed beneath the sea. This conclusion agrees with the fact that the Rev. W. Ellis found marine remains at a considerable height, which he believes were interstratified with volcanic matter; as is likewise described to be the case by Messrs. Tyerman and Bennett at Huaheine, an island in this same archipelago. Mr. Stutchbury also discovered near the summit of one of the loftiest mountains of Tahiti, at the height of several thousand feet, a stratum of semi-fossil coral. None of these remains have been specifically examined. On the coast, where masses of coral-rock would have afforded the clearest evidence, I looked in vain for any signs of recent elevation. For references to the above authorities, and for more detailed reasons for not believing that Tahiti has been recently elevated, I must refer to the "Structure and Distribution of Coral-Reefs."
MAURITIUS.
Approaching this island on the northern or north-western side, a curved chain of bold mountains, surmounted by rugged pinnacles, is seen to rise from a smooth border of cultivated land, which gently slopes down to the coast. At the first glance, one is tempted to believe that the sea lately reached the base of these mountains, and upon examination, this view, at least with respect to the inferior parts of the border, is found to be perfectly correct. Several authors have described masses of upraised coral- rock round the greater part of the circumference of the island. (Captain Carmichael, in Hooker's "Bot. Misc." volume 2 page 301. Captain Lloyd has lately, in the "Proceedings of the Geological Society" (volume 3 page 317), described carefully some of these masses. In the "Voyage a l'Isle de France, par un Officier du Roi," many interesting facts are given on this subject. Consult also "Voyage aux Quatre Isles d'Afrique, par M. Bory St. Vincent.") Between Tamarin Bay and the Great Black River I observed, in company with Captain Lloyd, two hillocks of coral-rock, formed in their lower part of hard calcareous sandstone, and in their upper of great blocks, slightly aggregated, of Astraea and Madrepora, and of fragments of basalt; they were divided into beds dipping seaward, in one case at an angle of 8 degrees, and in the other at 18 degrees; they had a water-worn appearance, and they rose abruptly from a smooth surface, strewed with rolled debris of organic remains, to a height of about twenty feet. The Officier du Roi, in his most interesting tour in 1768 round the island, has described masses of upraised coral-rocks, still retaining that moat-like structure (see my "Coral Reefs") which is characteristic of the living reefs. On the coast northward of Port Louis, I found the lava concealed for a considerable space inland by a conglomerate of corals and shells, like those on the beach, but in parts consolidated by red ferruginous matter. M. Bory St. Vincent has described similar calcareous beds over nearly the whole of the plain of Pamplemousses. Near Port Louis, when turning over some large stones, which lay in the bed of a stream at the head of a protected creek, and at the height of some yards above the level of spring tides, I found several shells of serpula still adhering to their under sides.
The jagged mountains near Port Louis rise to a height of between two and three thousand feet; they consist of strata of basalt, obscurely separated from each other by firmly aggregated beds of fragmentary matter; and they are intersected by a few vertical dikes. The basalt in some parts abounds with large crystals of augite and olivine, and is generally compact. The interior of the island forms a plain, raised probably about a thousand feet above the level of the sea, and composed of streams of lava which have flowed round and between the rugged basaltic mountains. These more recent lavas are also basaltic, but less compact, and some of them abound with feldspar, so that they even fuse into a pale coloured glass. On the banks of the Great River, a section is exposed nearly five hundred feet deep, worn through numerous thin sheets of the lava of this series, which are separated from each other by beds of scoriae. They seem to have been of subaerial formation, and to have flowed from several points of eruption on the central platform, of which the Piton du Milieu is said to be the principal one. There are also several volcanic cones, apparently of this modern period, round the circumference of the island, especially at the northern end, where they form separate islets.
The mountains composed of the more compact and crystalline basalt, form the main skeleton of the island. M. Bailly ("Voyage aux Terres Australes" tome 1 page 54.) states that they all "se developpent autour d'elle comme une ceinture d'immenses remparts, toutes affectant une pente plus ou moins enclinee vers le rivage de la mer; tandis, au contraire, que vers le centre de l'ile elles presentent une coupe abrupte, et souvent taillee a pic. Toutes ces montagnes sont formees de couches paralleles inclinees du centre de l'ile vers la mer." These statements have been disputed, though not in detail, by M. Quoy, in the voyage of Freycinet. As far as my limited means of observation went, I found them perfectly correct. (M. Lesson, in his account of this island, in the "Voyage of the 'Coquille'," seems to follow M. Bailly's views.) The mountains on the N.W. side of the island, which I examined, namely, La Pouce, Peter Botts, Corps de Garde, Les Mamelles, and apparently another farther southward, have precisely the external shape and stratification described by M. Bailly. They form about a quarter of his girdle of ramparts. Although these mountains now stand quite detached, being separated from each other by breaches, even several miles in width, through which deluges of lava have flowed from the interior of the island; nevertheless, seeing their close general similarity, one must feel convinced that they originally formed parts of one continuous mass. Judging from the beautiful map of the Mauritius, published by the Admiralty from a French MS., there is a range of mountains (M. Bamboo) on the opposite side of the island, which correspond in height, relative position, and external form, with those just described. Whether the girdle was ever complete may well be doubted; but from M. Bailly's statements, and my own observations, it may be safely concluded that mountains with precipitous inland flanks, and composed of strata dipping outwards, once extended round a considerable portion of the circumference of the island. The ring appears to have been oval and of vast size; its shorter axis, measured across from the inner sides of the mountains near Port Louis and those near Grand Port, being no less than thirteen geographical miles in length. M. Bailly boldly supposes that this enormous gulf, which has since been filled up to a great extent by streams of modern lava, was formed by the sinking in of the whole upper part of one great volcano.
It is singular in how many respects those portions of St. Jago and of Mauritius which I visited agree in their geological history. At both islands, mountains of similar external form, stratification, and (at least in their upper beds) composition, follow in a curved chain the coast-line. These mountains in each case appear originally to have formed parts of one continuous mass. The basaltic strata of which they are composed, from their compact and crystalline structure, seem, when contrasted with the neighbouring basaltic streams of subaerial formation, to have flowed beneath the pressure of the sea, and to have been subsequently elevated. We may suppose that the wide breaches between the mountains were in both cases worn by the waves, during their gradual elevation--of which process, within recent times, there is abundant evidence on the coast-land of both islands. At both, vast streams of more recent basaltic lavas have flowed from the interior of the island, round and between the ancient basaltic hills; at
In the valley of Tia-auru, the commonest rocks are basalts with much olivine, and in some cases almost composed of large crystals of augite. I picked up some specimens, with much glassy feldspar, approaching in character to trachyte. There were also many large blocks of vesicular basalt, with the cavities beautifully lined with chabasie (?), and radiating bundles of mesotype. Some of these specimens presented a curious appearance, owing to a number of the vesicles being half filled up with a white, soft, earthy mesotypic mineral, which intumesced under the blowpipe in a remarkable manner. As the upper surfaces in all the half-filled cells are exactly parallel, it is evident that this substance has sunk to the bottom of each cell from its weight. Sometimes, however, it entirely fills the cells. Other cells are either quite filled, or lined, with small crystals, apparently of chabasie; these crystals, also, frequently line the upper half of the cells partly filled with the earthy mineral, as well as the upper surface of this substance itself, in which case the two minerals appear to blend into each other. I have never seen any other amygdaloid with the cells half filled in the manner here described; and it is difficult to imagine the causes which determined the earthy mineral to sink from its gravity to the bottom of the cells, and the crystalline mineral to adhere in a coating of equal thickness round the sides of the cells. (MacCulloch, however, has described and given a plate of ("Geolog. Trans." 1st series volume 4 page 225) a trap rock, with cavities filled up horizontally with quartz and chalcedony. The upper halves of these cavities are often filled by layers, which follow each irregularity of the surface, and by little depending stalactites of the same siliceous substances.)
The basic strata on the sides of the valley are gently inclined seaward, and I nowhere observed any sign of disturbance; the strata are separated from each other by thick, compact beds of conglomerate, in which the fragments are large, some being rounded, but most angular. From the character of these beds, from the compact and crystalline condition of most of the lavas, and from the nature of the infiltrated minerals, I was led to conjecture that they had originally flowed beneath the sea. This conclusion agrees with the fact that the Rev. W. Ellis found marine remains at a considerable height, which he believes were interstratified with volcanic matter; as is likewise described to be the case by Messrs. Tyerman and Bennett at Huaheine, an island in this same archipelago. Mr. Stutchbury also discovered near the summit of one of the loftiest mountains of Tahiti, at the height of several thousand feet, a stratum of semi-fossil coral. None of these remains have been specifically examined. On the coast, where masses of coral-rock would have afforded the clearest evidence, I looked in vain for any signs of recent elevation. For references to the above authorities, and for more detailed reasons for not believing that Tahiti has been recently elevated, I must refer to the "Structure and Distribution of Coral-Reefs."
MAURITIUS.
Approaching this island on the northern or north-western side, a curved chain of bold mountains, surmounted by rugged pinnacles, is seen to rise from a smooth border of cultivated land, which gently slopes down to the coast. At the first glance, one is tempted to believe that the sea lately reached the base of these mountains, and upon examination, this view, at least with respect to the inferior parts of the border, is found to be perfectly correct. Several authors have described masses of upraised coral- rock round the greater part of the circumference of the island. (Captain Carmichael, in Hooker's "Bot. Misc." volume 2 page 301. Captain Lloyd has lately, in the "Proceedings of the Geological Society" (volume 3 page 317), described carefully some of these masses. In the "Voyage a l'Isle de France, par un Officier du Roi," many interesting facts are given on this subject. Consult also "Voyage aux Quatre Isles d'Afrique, par M. Bory St. Vincent.") Between Tamarin Bay and the Great Black River I observed, in company with Captain Lloyd, two hillocks of coral-rock, formed in their lower part of hard calcareous sandstone, and in their upper of great blocks, slightly aggregated, of Astraea and Madrepora, and of fragments of basalt; they were divided into beds dipping seaward, in one case at an angle of 8 degrees, and in the other at 18 degrees; they had a water-worn appearance, and they rose abruptly from a smooth surface, strewed with rolled debris of organic remains, to a height of about twenty feet. The Officier du Roi, in his most interesting tour in 1768 round the island, has described masses of upraised coral-rocks, still retaining that moat-like structure (see my "Coral Reefs") which is characteristic of the living reefs. On the coast northward of Port Louis, I found the lava concealed for a considerable space inland by a conglomerate of corals and shells, like those on the beach, but in parts consolidated by red ferruginous matter. M. Bory St. Vincent has described similar calcareous beds over nearly the whole of the plain of Pamplemousses. Near Port Louis, when turning over some large stones, which lay in the bed of a stream at the head of a protected creek, and at the height of some yards above the level of spring tides, I found several shells of serpula still adhering to their under sides.
The jagged mountains near Port Louis rise to a height of between two and three thousand feet; they consist of strata of basalt, obscurely separated from each other by firmly aggregated beds of fragmentary matter; and they are intersected by a few vertical dikes. The basalt in some parts abounds with large crystals of augite and olivine, and is generally compact. The interior of the island forms a plain, raised probably about a thousand feet above the level of the sea, and composed of streams of lava which have flowed round and between the rugged basaltic mountains. These more recent lavas are also basaltic, but less compact, and some of them abound with feldspar, so that they even fuse into a pale coloured glass. On the banks of the Great River, a section is exposed nearly five hundred feet deep, worn through numerous thin sheets of the lava of this series, which are separated from each other by beds of scoriae. They seem to have been of subaerial formation, and to have flowed from several points of eruption on the central platform, of which the Piton du Milieu is said to be the principal one. There are also several volcanic cones, apparently of this modern period, round the circumference of the island, especially at the northern end, where they form separate islets.
The mountains composed of the more compact and crystalline basalt, form the main skeleton of the island. M. Bailly ("Voyage aux Terres Australes" tome 1 page 54.) states that they all "se developpent autour d'elle comme une ceinture d'immenses remparts, toutes affectant une pente plus ou moins enclinee vers le rivage de la mer; tandis, au contraire, que vers le centre de l'ile elles presentent une coupe abrupte, et souvent taillee a pic. Toutes ces montagnes sont formees de couches paralleles inclinees du centre de l'ile vers la mer." These statements have been disputed, though not in detail, by M. Quoy, in the voyage of Freycinet. As far as my limited means of observation went, I found them perfectly correct. (M. Lesson, in his account of this island, in the "Voyage of the 'Coquille'," seems to follow M. Bailly's views.) The mountains on the N.W. side of the island, which I examined, namely, La Pouce, Peter Botts, Corps de Garde, Les Mamelles, and apparently another farther southward, have precisely the external shape and stratification described by M. Bailly. They form about a quarter of his girdle of ramparts. Although these mountains now stand quite detached, being separated from each other by breaches, even several miles in width, through which deluges of lava have flowed from the interior of the island; nevertheless, seeing their close general similarity, one must feel convinced that they originally formed parts of one continuous mass. Judging from the beautiful map of the Mauritius, published by the Admiralty from a French MS., there is a range of mountains (M. Bamboo) on the opposite side of the island, which correspond in height, relative position, and external form, with those just described. Whether the girdle was ever complete may well be doubted; but from M. Bailly's statements, and my own observations, it may be safely concluded that mountains with precipitous inland flanks, and composed of strata dipping outwards, once extended round a considerable portion of the circumference of the island. The ring appears to have been oval and of vast size; its shorter axis, measured across from the inner sides of the mountains near Port Louis and those near Grand Port, being no less than thirteen geographical miles in length. M. Bailly boldly supposes that this enormous gulf, which has since been filled up to a great extent by streams of modern lava, was formed by the sinking in of the whole upper part of one great volcano.
It is singular in how many respects those portions of St. Jago and of Mauritius which I visited agree in their geological history. At both islands, mountains of similar external form, stratification, and (at least in their upper beds) composition, follow in a curved chain the coast-line. These mountains in each case appear originally to have formed parts of one continuous mass. The basaltic strata of which they are composed, from their compact and crystalline structure, seem, when contrasted with the neighbouring basaltic streams of subaerial formation, to have flowed beneath the pressure of the sea, and to have been subsequently elevated. We may suppose that the wide breaches between the mountains were in both cases worn by the waves, during their gradual elevation--of which process, within recent times, there is abundant evidence on the coast-land of both islands. At both, vast streams of more recent basaltic lavas have flowed from the interior of the island, round and between the ancient basaltic hills; at
Free e-book «Volcanic Islands, Charles Robert Darwin [best motivational books for students TXT] 📗» - read online now
Similar e-books:
Comments (0)