The Power of Movement in Plants, Charles Darwin [the reading list book TXT] 📗
- Author: Charles Darwin
- Performer: -
Book online «The Power of Movement in Plants, Charles Darwin [the reading list book TXT] 📗». Author Charles Darwin
Fig. 28. Cucurbita ovifera: circumnutation of arched hypocotyl at a very early age, traced in darkness on a horizontal glass, from 8 A.M. to 10.20
A.M. on the following day. The movement of the bead magnified 20 times, here reduced to one-half of original scale.
same conditions as in the cases of Aesculus, Phaseolus, and Vicia.
Facsimiles are here given (Fig. 27) of two of these tracks; and a third short one was almost as plainly serpentine as that at A. It was also manifest by a greater or less amount of soot having been swept off the glasses, that the tips had
[page 40]
pressed alternately with greater and less force on them. There must, therefore, have been movement in at least two planes at right angles to one another. These radicles were so delicate that they rarely had the power to sweep the glasses quite clean. One of them had developed some lateral or secondary rootlets, which projected a few degrees beneath the horizon; and it is an important fact that three of them left distinctly serpentine tracks on the smoked surface, showing beyond doubt that they had circumnutated like the main or primary radicle. But the tracks were so slight that they could not be traced and copied after the smoked surface had been varnished.
Fig. 29. Cucurbita ovifera: circumnutation of straight and vertical hypocotyl, with filament fastened transversely across its upper end, traced in darkness on a horizontal glass, from 8.30 A.M. to 8.30 P.M. The movement of the terminal bead originally magnified about 18 times, here only 4 �
times.
Hypocotyl.—A seed lying on damp sand was firmly fixed by two crossed wires and by its own growing radicle. The cotyledons were still enclosed within the seed-coats; and the short hypocotyl, between the summit of the radicle and the cotyledons, was as yet only slightly arched. A filament (.85 of inch in length) was attached at an angle of 35o above the horizon to the side of the arch adjoining the cotyledons. This part would ultimately form the upper end of the hypocotyl, after it had grown straight and vertical.
Had the seed been properly planted, the hypocotyl at this stage of growth would have been deeply buried beneath the surface. The course followed by the bead of the filament is shown in Fig. 28. The chief lines of movement from left to right in the figure were parallel to the plane of the two united cotyledons and of the flattened seed; and this movement would aid in dragging them out of the seed-coats, which are held down by a special structure hereafter to be described. The movement at right angles to the above lines was due to the arched hypocotyl becoming more arched as it increased in height. The foregoing observations apply to the leg of the arch next to the cotyledons, but
[page 41]
the other leg adjoining the radicle likewise circumnutated at an equally early age.
The movement of the same hypocotyl after it had become straight and vertical, but with the cotyledons only partially expanded, is shown in Fig.
29. The course pursued during 12 h. apparently represents four and a half ellipses or ovals, with the longer axis of the first at nearly right angles to that of the others. The longer axes of all were oblique to a line joining the opposite cotyledons. The actual extreme distance from side to side over which the summit of the tall hypocotyl passed in the course of 12
h. was .28 of an inch. The original figure was traced on a large scale, and from the obliquity of the line of view the outer parts of the diagram are much exaggerated.
Cotyledons.—On two occasions the movements of the cotyledons were traced on a vertical glass, and as the ascending and descending lines did not quite coincide, very narrow ellipses were formed; they therefore circumnutated. Whilst young they rise vertically up at night, but their tips always remain reflexed; on the following morning they sink down again.
With a seedling kept in complete darkness they moved in the same manner, for they sank from 8.45 A.M. to 4.30 P.M.; they then began to rise and remained close together until 10 P.M., when they were last observed. At 7
A.M. on the following morning they were as much expanded as at any hour on the previous day. The cotyledons of another young seedling, exposed to the light, were fully open for the first time on a certain day, but were found completely closed at 7 A.M. on the following morning. They soon began to expand again, and continued doing so till about 5 P.M.; they then began to rise, and by 10.30 P.M. stood vertically and were almost closed. At 7 A.M.
on the third morning they were nearly vertical, and again expanded during the day; on the fourth morning they were not closed, yet they opened a little in the course of the day and rose a little on the following night.
By this time a minute true leaf had become developed. Another seedling, still older, bearing a well-developed leaf, had a sharp rigid filament affixed to one of its cotyledons (85 mm. in length), which recorded its own movements on a revolving drum with smoked paper. The observations were made in the hot-house, where the plant had lived, so that there was no change in temperature or light. The record commenced at 11 A.M. on February 18th; and from this hour till 3 P.M. the
[page 42]
cotyledon fell; it then rose rapidly till 9 P.M., then very gradually till 3 A.M. February 19th, after which hour it sank gradually till 4.30 P.M.; but the downward movement was interrupted by one slight rise or oscillation about 1.30 P.M. After 4.30 P.M. (19th) the cotyledon rose till 1 A.M. (in the night of February 20th) and then sank very gradually till 9.30 A.M., when our observations ceased. The amount of movement was greater on the 18th than on the 19th or on the morning of the 20th.
Cucurbita aurantia.—An arched hypocotyl was found buried a little beneath the surface of the soil; and in order to prevent it straightening itself quickly, when relieved from the surrounding pressure of the soil, the two legs of the arch were tied together. The seed was then lightly covered with loose damp earth. A filament with a bead at the end was affixed to the basal leg, the movements of which were observed during two days in the usual manner. On the first day the arch moved in a zigzag line towards the side of the basal leg. On the next day, by which time the dependent cotyledons had been dragged above the surface of the soil, the tied arch changed its course greatly nine times in the course of 14 � h. It swept a large, extremely irregular, circular figure, returning at night to nearly the same spot whence it had started early in the morning. The line was so strongly zigzag that it apparently represented five ellipses, with their longer axes pointing in various directions. With respect to the periodical movements of the cotyledons, those of several young seedlings formed together at 4 P.M. an angle of about 60o, and at 10 P.M. their lower parts stood vertically and were in contact; their tips, however, as is usual in the genus, were permanently reflexed. These cotyledons, at 7 A.M. on the following morning, were again well expanded.
Lagenaria vulgaris (var. miniature Bottle-gourd) (Cucurbitaceae).—A seedling opened its cotyledons, the movements of which were alone observed, slightly on June 27th and closed them at night: next day, at noon (28th), they included an angle of 53o, and at 10 P.M. they were in close contact, so that each had risen 26 1/2o. At noon, on the 29th, they included an angle of 118o, and at 10 P.M. an angle of 54o, so each had risen 32o. On the following day they were still more open, and the nocturnal rise was greater, but the angles were not measured. Two other seedlings were observed, and behaved during three days in a closely similar manner. The cotyledons, therefore,
[page 43]
open more and more on each succeeding day, and rise each night about 30o; consequently during the first two nights of their life they stand vertically and come into contact.
Fig. 30. Lagenaria vulgaris: circumnutation of a cotyledon, 1 � inch in length, apex only 4 3/4 inches from the vertical glass, on which its movements were traced from 7.35 A.M. July 11th to 9.5 A.M. on the 14th.
Figure here given reduced to one-third of original scale.
In order to ascertain more accurately the nature of these movements, the hypocotyl of a seedling, with its cotyledons well expanded, was secured to a little stick, and a filament with triangles of paper was affixed to one of the cotyledons. The observations were made under a rather dim skylight, and the temperature during the whole time was between 17 1/2o to 18o C. (63o to 65o F.). Had the temperature been higher and the light brighter, the movements would probably have been greater. On July 11th (see Fig. 30), the cotyledon fell from 7.35 A.M. till 10 A.M.; it then rose (rapidly after 4
P.M.) till it stood quite vertically at 8.40 P.M. During the early morning of the next day (12th) it fell, and continued to fall till 8 A.M., after which hour it rose, then fell, and again rose, so that by 10.35 P.M. it stood much higher than it did in the morning, but was not vertical as on the preceding night. During the following early morning and whole day (13th) it fell and circumnutated, but had not risen when observed late in the evening; and this was probably due to the deficiency of heat or light, or of both. We thus see that the cotyledons became more widely open at noon on each succeeding day; and that they rose considerably each night, though not acquiring a vertical position, except during the first two nights.
Cucumis dudaim (Cucurbitaceae).—Two seedlings had opened [page 44]
their cotyledons for the first time during the day,—one to the extent of 90o and the other rather more; they remained in nearly the same position until 10.40 P.M.; but by 7 A.M. on the following morning the one which had been previously open to the extent of 90o had its cotyledons vertical and completely shut; the other seedling had them nearly shut. Later in the morning they opened in the ordinary manner. It appears therefore that the cotyledons of this plant close and open at somewhat different periods from those of the foregoing species of the allied genera of Cucurbita and Lagenaria.
Fig. 31. Opuntia basilaris: conjoint circumnutation of hypocotyl and cotyledon; filament fixed longitudinally to cotyledon, and movement traced during 66 h. on horizontal glass. Movement of the terminal bead magnified about 30 times, here reduced to one-third scale. Seedling kept in hot-house, feebly illuminated from above.
Opuntia basilaris (Cacteae).—A seedling was carefully observed, because, considering its appearance and the nature of the mature plant, it seemed very unlikely that either the hypocotyl or cotyledons would circumnutate to an appreciable extent. The cotyledons were well developed, being .9 of an inch in length, .22 in breadth, and .15 in thickness. The almost cylindrical hypocotyl, now bearing a minute spinous bud on its summit, was only .45 of an inch in height, and .19 in diameter. The tracing (Fig. 31) shows the combined movement of the hypocotyl and of one of the cotyledons, from 4.45 P.M. on May 28th to 11 A.M. on the 31st. On
Comments (0)