The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗». Author Sir Robert Stawell Ball
The circumstances with regard to the moon are much more complicated. The moon describes a certain orbit around the earth; that orbit lies in a certain plane, and that plane has, of course, a certain pole on the celestial sphere. The precessional effect of the moon would accordingly tend to make the pole of the earth's axis describe a circle around that point in the heavens which is the pole of the moon's orbit. This point is about 5 deg. from the pole of the ecliptic. The pole of the earth is therefore solicited by two different movements--one a revolution around the pole of the ecliptic, the other a revolution about another point 5 deg. distant, which is the pole of the moon's orbit. It would thus seem that the earth's pole should make a certain composite movement due to the two separate movements. This is really the case, but there is a point to be very carefully attended to, which at first seems almost paradoxical. We have shown how the potency of the moon as a precessional agent exceeds that of the sun, and therefore it might be thought that the composite movement of the earth's pole would conform more nearly to a rotation around the pole of the plane of the moon's orbit than to a rotation around the pole of the ecliptic; but this is not the case. The precessional movement is represented by a revolution around the pole of the ecliptic, as is shown in the figure. Here lies the germ of one of those exquisite astronomical discoveries which delight us by illustrating some of the most subtle phenomena of nature.
The plane in which the moon revolves does not occupy a constant position. We are not here specially concerned with the causes of this change in the plane of the moon's orbit, but the character of the movement must be enunciated. The inclination of this plane to the ecliptic is about 5 deg., and this inclination does not vary (except within very narrow limits); but the line of intersection of the two planes does vary, and, in fact, varies so quickly that it completes a revolution in about 18-2/3 years. This movement of the plane of the moon's orbit necessitates a corresponding change in the position of its pole. We thus see that the pole of the moon's orbit must be actually revolving around the pole of the ecliptic, always remaining at the same distance of 5 deg., and completing its revolution in 18-2/3 years. It will, therefore, be obvious that there is a profound difference between the precessional effect of the sun and of the moon in their action on the earth. The sun invites the earth's pole to describe a circle around a fixed centre; the moon invites the earth's pole to describe a circle around a centre which is itself in constant motion. It fortunately happens that the circumstances of the case are such as to reduce considerably the complexity of the problem. The movement of the moon's plane, only occupying about 18-2/3 years, is a very rapid motion compared with the whole precessional movement, which occupies about 26,000 years. It follows that by the time the earth's axis has completed one circuit of its majestic cone, the pole of the moon's plane will have gone round about 1,400 times. Now, as this pole really only describes a comparatively small cone of 5 deg. in radius, we may for a first approximation take the average position which it occupies; but this average position is, of course, the centre of the circle which it describes--that is, the pole of the ecliptic.
We thus see that the average precessional effect of the moon simply conspires with that of the sun to produce a revolution around the pole of the ecliptic. The grosser phenomena of the movements of the earth's axis are to be explained by the uniform revolution of the pole in a circular path; but if we make a minute examination of the track of the earth's axis, we shall find that though it, on the whole, conforms with the circle, yet that it really traces out a sinuous line, sometimes on the inside and sometimes on the outside of the circle. This delicate movement arises from the continuous change in the place of the pole of the moon's orbit. The period of these undulations is 18-2/3 years, agreeing exactly with the period of the revolution of the moon's nodes. The amount by which the pole departs from the circle on either side is only about 9.2 seconds--a quantity rather less than the twenty-thousandth part of the radius of the sphere. This phenomenon, known as "nutation," was discovered by the beautiful telescopic researches of Bradley, in 1747. Whether we look at the theoretical interest of the subject or at the refinement of the observations involved, this achievement of the "Vir incomparabilis," as Bradley has been called by Bessel, is one of the masterpieces of astronomical genius.
The phenomena of precession and nutation depend on movements of the earth itself, and not on movements of the axis of rotation within the earth. Therefore the distance of any particular spot on the earth from the north or south pole is not disturbed by either of these phenomena. The latitude of a place is the distance of the place from the earth's equator, and this quantity remains unaltered in the course of the long precession cycle of 26,000 years. But it has been discovered within the last few years that latitudes are subject to a small periodic change of a few tenths of a second of arc. This was first pointed out about 1880 by Dr. Kuestner, of Berlin, and by a masterly analysis of all available observations, made in the course of many years past at various observatories, Dr. Chandler, of Boston, has shown that the latitude of every point on the earth is subject to a double oscillation, the period of one being 427 days and the other about a year, the mean amplitude of each being O".14. In other words, the spot in the arctic regions, directly in the prolongation of the earth's axis of rotation, is not absolutely fixed; the end of the imaginary axis moves about in a complicated manner, but always keeping within a few yards of its average position. This remarkable discovery is not only of value as introducing a new refinement in many astronomical researches depending on an accurate knowledge of the latitude, but theoretical investigations show that the periods of this variation are incompatible with the assumption that the earth is an absolutely rigid body. Though this assumption has in other ways been found to be untenable, the confirmation of this view by the discovery of Dr. Chandler is of great importance.
CHAPTER XXV.
THE ABERRATION OF LIGHT.
The Real and Apparent Movements of the Stars--How they can be
Discriminated--Aberration produces Effects dependent on the
Position of the Stars--The Pole of the Ecliptic--Aberration makes
Stars seem to Move in a Circle, an Ellipse, or a Straight Line
according to Position--All the Ellipses have Equal Major Axes--How
is this Movement to be Explained?--How to be Distinguished from
Annual Parallax--The Apex of the Earth's Way--How this is to be
Explained by the Velocity of Light--How the Scale of the Solar
System can be Measured by the Aberration of Light.
We have in this chapter to narrate a discovery of a recondite character, which illustrates in a forcible manner some of the fundamental truths of Astronomy. Our discussion of it will naturally be divided into two parts. In the first part we must describe the nature of the phenomenon, and then we must give the extremely elegant explanation afforded by the properties of light. The telescopic discovery of aberration, as well as its explanation, are both due to the illustrious Bradley.
The expression _fixed_ star, so often used in astronomy, is to be received in a very qualified sense. The stars are, no doubt, well fixed in their places, so far as coarse observation is concerned. The lineaments of the constellations remain unchanged for centuries, and, in contrast with the ceaseless movements of the planets, the stars are not inappropriately called fixed. We have, however, had more than one occasion to show throughout the course of this work that the expression "fixed star" is not an accurate one when minute quantities are held in estimation. With the exact measures of modern instruments, many of these quantities are so perceptible that they have to be always reckoned with in astronomical enquiry. We can divide the movements of the stars into two great classes: the real movements and the apparent movements. The proper motion of the stars and the movements of revolution of the binary stars constitute the real movements of these bodies. These movements are special to each star, so that two stars, although close together in the heavens, may differ in the widest degree as to the real movements which they possess. It may, indeed, sometimes happen that stars in a certain region are animated with a common movement. In this phenomenon we have traces of a real movement shared by a number of stars in a certain group. With this exception, however, the real movements of the stars seem to be governed by no systematic law, and the rapidly moving stars are scattered here and there indiscriminately over the heavens.
The apparent movements of the stars have a different character, inasmuch as we find the movement of each star determined by the place which it occupies in the heavens. It is by this means that we discriminate the real movements of the star from its apparent movements, and examine the character of both.
In the present chapter we are concerned with the apparent movements only, and of these there are three, due respectively to precession, to nutation, and to aberration. Each of these apparent movements obeys laws peculiar to itself, and thus it becomes possible to analyse the total apparent motion, and to discriminate the proportions in which the precession,
Comments (0)