readenglishbook.com » Science » The Power of Movement in Plants, Charles Darwin [the reading list book TXT] 📗

Book online «The Power of Movement in Plants, Charles Darwin [the reading list book TXT] 📗». Author Charles Darwin



1 2 3 4 5 6 7 8 9 10 ... 99
Go to page:
ceased to increase in size from a very early age, we meet with similar movements; and here, as Pfeffer has shown** and as we shall see in the course of this work, the increased turgescence of the cells on opposite sides is not followed by increased growth. Wiesner denies in certain cases the accuracy of De Vries’ conclusion about turgescence, and maintains*** that the increased extensibility of the cell-walls is the more important element.

That such extensibility must accompany increased turgescence in order that the part may bend is manifest, and this has been insisted on by several botanists; but in the case of unicellular plants it can hardly fail to be the more important element. On the whole we may at present conclude that in-

 

* Sachs first showed (‘Lehrbuch,’ etc., 4th edit. p. 452) the intimate connection between turgescence and growth. For De Vries’ interesting essay, ‘Wachsthumskr�mmungen mehrzelliger Organe,’ see ‘Bot. Zeitung,’ Dec. 19, 1879, p. 830.

 

** ‘Die Periodischen Bewegungen der Blattorgane,’ 1875.

 

*** ‘Untersuchungen �ber den Heliotropismus,’ Sitzb. der K. Akad. der Wissenschaft. (Vienna), Jan. 1880.

 

[page 3]

creased growth, first on one side and then on another, is a secondary effect, and that the increased turgescence of the cells, together with the extensibility of their walls, is the primary cause of the movement of circumnutation.*

 

In the course of the present volume it will be shown that apparently every growing part of every plant is continually circumnutating, though often on a small scale. Even the stems of seedlings before they have broken through the ground, as well as their buried radicles, circumnutate, as far as the pressure of the surrounding earth permits. In this universally present movement we have the basis or groundwork for the acquirement, according to the requirements of the plant, of the most diversified movements. Thus, the great sweeps made by the stems of twining plants, and by the tendrils of other climbers, result from a mere increase in the amplitude of the ordinary movement of circumnutation. The position which young leaves and other organs ultimately assume is acquired by the circumnutating movement being increased in some one direction. the leaves of various plants are said to sleep at night, and it will be seen that their blades then assume a vertical position through modified circumnutation, in order to protect their upper surfaces from being chilled through radiation. The movements of various organs to the light, which are so general throughout the vegetable kingdom, and occasionally from the light, or transversely with respect to it, are all modified

 

* See Mr. Vines’ excellent discussion (‘Arbeiten des Bot. Instituts in W�rzburg,’ B. II. pp. 142, 143, 1878) on this intricate subject.

Hofmeister’s observations (‘Jahreschrifte des Vereins f�r Vaterl.

Naturkunde in W�rtemberg,’ 1874, p. 211) on the curious movements of Spirogyra, a plant consisting of a single row of cells, are valuable in relation to this subject.

 

[page 4]

forms of circumnutation; as again are the equally prevalent movements of stems, etc., towards the zenith, and of roots towards the centre of the earth. In accordance with these conclusions, a considerable difficulty in the way of evolution is in part removed, for it might have been asked, how did all these diversified movements for the most different purposes first arise? As the case stands, we know that there is always movement in progress, and its amplitude, or direction, or both, have only to be modified for the good of the plant in relation with internal or external stimuli.

 

Besides describing the several modified forms of circumnutation, some other subjects will be discussed. The two which have interested us most are, firstly, the fact that with some seedling plants the uppermost part alone is sensitive to light, and transmits an influence to the lower part, causing it to bend. If therefore the upper part be wholly protected from light, the lower part may be exposed for hours to it, and yet does not become in the least bent, although this would have occurred quickly if the upper part had been excited by light. Secondly, with the radicles of seedlings, the tip is sensitive to various stimuli, especially to very slight pressure, and when thus excited, transmits an influence to the upper part, causing it to bend from the pressed side. On the other hand, if the tip is subjected to the vapour of water proceeding from one side, the upper part of the radicle bends towards this side. Again it is the tip, as stated by Ciesielski, though denied by others, which is sensitive to the attraction of gravity, and by transmission causes the adjoining parts of the radicle to bend towards the centre of the earth. These several cases of the effects of contact, other irritants, vapour, light, and the [page 5]

attraction of gravity being transmitted from the excited part for some little distance along the organ in question, have an important bearing on the theory of all such movements.

 

[Terminology.—A brief explanation of some terms which will be used, must here be given. With seedlings, the stem which supports the cotyledons (i.e.

the organs which represent the first leaves) has been called by many botanists the hypocotyledonous stem, but for brevity sake we will speak of it merely as the hypocotyl: the stem immediately above the cotyledons will be called the epicotyl or plumule. The radicle can be distinguished from the hypocotyl only by the presence of root-hairs and the nature of its covering. The meaning of the word circumnutation has already been explained. Authors speak of positive and negative heliotropism,*—that is, the bending of an organ to or from the light; but it is much more convenient to confine the word heliotropism to bending towards the light, and to designate as apheliotropism bending from the light. There is another reason for this change, for writers, as we have observed, occasionally drop the adjectives positive and negative, and thus introduce confusion into their discussions. Diaheliotropism may express a position more or less transverse to the light and induced by it. In like manner positive geotropism, or bending towards the centre of the earth, will be called by us geotropism; apogeotropism will mean bending in opposition to gravity or from the centre of the earth; and diageotropism, a position more or less transverse to the radius of the earth. The words heliotropism and geotropism properly mean the act of moving in relation to the light or the earth; but in the same manner as gravitation, though defined as “the act of tending to the centre,” is often used to express the cause of a body falling, so it will be found convenient occasionally to employ heliotropism and geotropism, etc., as the cause of the movements in question.

 

The term epinasty is now often used in Germany, and implies that the upper surface of an organ grows more quickly than the * The highly useful terms of Heliotropism and Geotropism were first used by Dr. A. B. Frank: see his remarkable ‘Beitr�ge zur Pflanzenphysiologie,’

1868.

[page 6]

lower surface, and thus causes it to bend downwards. Hyponasty is the reverse, and implies increased growth along the lower surface, causing the part to bend upwards.*

 

Methods of Observation.—The movements, sometimes very small and sometimes considerable in extent, of the various organs observed by us, were traced in the manner which after many trials we found to be best, and which must be described. Plants growing in pots were protected wholly from the light, or had light admitted from above, or on one side as the case might require, and were covered above by a large horizontal sheet of glass, and with another vertical sheet on one side. A glass filament, not thicker than a horsehair, and from a quarter to three-quarters of an inch in length, was affixed to the part to be observed by means of shellac dissolved in alcohol. The solution was allowed to evaporate, until it became so thick that it set hard in two or three seconds, and it never injured the tissues, even the tips of tender radicles, to which it was applied. To the end of the glass filament an excessively minute bead of black sealing-wax was cemented, below or behind which a bit of card with a black dot was fixed to a stick driven into the ground. The weight of the filament was so slight that even small leaves were not perceptibly pressed down. another method of observation, when much magnification of the movement was not required, will presently be described. The bead and the dot on the card were viewed through the horizontal or vertical glass-plate (according to the position of the object), and when one exactly covered the other, a dot was made on the glass-plate with a sharply pointed stick dipped in thick Indian-ink.

Other dots were made at short intervals of time and these were afterwards joined by straight lines. The figures thus traced were therefore angular; but if dots had been made every 1 or 2 minutes, the lines would have been more curvilinear, as occurred when radicles were allowed to trace their own courses on smoked glass-plates. To make the dots accurately was the sole difficulty, and required some practice. Nor could this be done quite accurately, when the movement was much magnified, such as 30 times and upwards; yet even in this case the general course may be trusted. To test the accuracy of the above method of observation, a filament was fixed to an * These terms are used in the sense given them by De Vries, ‘W�rzburg Arbeiten,’ Heft ii 1872, p. 252.

 

[page 7]

inanimate object which was made to slide along a straight edge and dots were repeatedly made on a glass-plate; when these were joined, the result ought to have been a perfectly straight line, and the line was very nearly straight. It may be added that when the dot on the card was placed half-an-inch below or behind the bead of sealing-wax, and when the glass-plate (supposing it to have been properly curved) stood at a distance of 7 inches in front (a common distance), then the tracing represented the movement of the bead magnified 15 times.

 

Whenever a great increase of the movement was not required, another, and in some respects better, method of observation was followed. This consisted in fixing two minute triangles of thin paper, about 1/20 inch in height, to the two ends of the attached glass filament; and when their tips were brought into a line so that they covered one another, dots were made as before on the glass-plate. If we suppose the glass-plate to stand at a distance of seven inches from the end of the shoot bearing the filament, the dots when joined, will give nearly the same figure as if a filament seven inches long, dipped in ink, had been fixed to the moving shoot, and had inscribed its own course on the plate. The movement is thus considerably magnified; for instance, if a shoot one inch in length were bending, and the glass-plate stood at the distance of seven inches, the movement would be magnified eight times. It would, however, have been very difficult to have ascertained in each case how great a length of the shoot was bending; and this is indispensable for ascertaining the degree to which the movement is magnified.

 

After dots had been made on the glass-plates by either of the above methods, they were copied on tracing paper and joined by ruled lines, with arrows showing the direction of the movement. The nocturnal courses are represented by straight broken lines. the first dot is always made larger than the others, so as to catch the eye, as may be seen in the diagrams.

The figures on the glass-plates were often drawn on too large a scale to be reproduced on the pages of this volume,

1 2 3 4 5 6 7 8 9 10 ... 99
Go to page:

Free e-book «The Power of Movement in Plants, Charles Darwin [the reading list book TXT] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment