The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗». Author Sir Robert Stawell Ball
It may be asked, what is the advantage of devoting so much time and labour to a celestial phenomenon like the transit of Venus which has so little bearing on practical affairs? What does it matter whether the sun be 95,000,000 miles off, or whether it be only 93,000,000, or any other distance? We must admit at once that the enquiry has but a slender bearing on matters of practical utility. No doubt a fanciful person might contend that to compute our nautical almanacs with perfect accuracy we require a precise knowledge of the distance of the sun. Our vast commerce depends on skilful navigation, and one factor necessary for success is the reliability of the "Nautical Almanac." The increased perfection of the almanac must therefore bear some relation to increased perfection in navigation. Now, as good authorities tell us that in running for a harbour on a tempestuous night, or in other critical emergencies, even a yard of sea-room is often of great consequence, so it may conceivably happen that to the infinitesimal influence of the transit of Venus on the "Nautical Almanac" is due the safety of a gallant vessel.
But the time, the labour, and the money expended in observing the transit of Venus are really to be defended on quite different grounds. We see in it a fruitful source of information. It tells us the distance of the sun, which is the foundation of all the great measurements of the universe. It gratifies the intellectual curiosity of man by a view of the true dimensions of the majestic solar system, in which the earth is seen to play a dignified, though still subordinate, part; and it leads us to a conception of the stupendous scale on which the universe is constructed.
It is not possible for us, with a due regard to the limits of this volume, to protract any longer our discussion of the transit of Venus. When we begin to study the details of the observations, we are immediately confronted with a multitude of technical and intricate matters. Unfortunately, there are very great difficulties in making the observations with the necessary precision. The moments when Venus enters on and leaves the solar disc cannot be very accurately observed, partly owing to a peculiar optical illusion known as "the black drop," whereby Venus seems to cling to the sun's limb for many seconds, partly owing to the influence of the planet's atmosphere, which helps to make the observed time of contact uncertain. These circumstances make it difficult to determine the distance of the sun from observations of transits of Venus with the accuracy which modern science requires. It seems therefore likely that the final determination of the sun's distance will be obtained in quite a different manner. This will be explained in Chapter XI., and hence we feel the less reluctance in passing any from the consideration of the transit of Venus as a method of celestial surveying.
We must now close our description of this lovely planet; but before doing so, let us add--or in some cases repeat--a few statistical facts as to the size and the dimensions of the planet and its orbit.
The diameter of Venus is about 7,660 miles, and the planet shows no measurable departure from the globular form, though we can hardly doubt that its polar diameter must really be somewhat shorter than the equatorial diameter. This diameter is only about 258 miles less than that of the earth. The mass of Venus is about three-quarters of the mass of the earth; or if, as is more usual, we compare the mass of Venus with the sun, it is to be represented by the fraction 1 divided by 425,000. It is to be observed that the mass of Venus is not quite so great in comparison with its bulk as might have been expected. The density of this planet is about 0.850 of that of the earth. Venus would weigh 4.81 times as much as a globe of water of equal size. The gravitation at its surface will, to a slight extent, be less than the gravitation at the surface of the earth. A body here falls sixteen feet in a second; a body let fall at the surface of Venus would fall about three feet less. It seems not unlikely that the time of rotation of Venus may be equal to the period of its revolution around the sun.
The orbit of Venus is remarkable for the close approach which it makes to a circle. The greatest distance of this planet from the sun does not exceed the least distance by one per cent. Its mean distance from the sun is about 67,000,000 miles, and the movement in the orbit amounts to a mean velocity of nearly 22 miles per second, the entire journey being accomplished in 224.70 days.
CHAPTER IX.
THE EARTH.
The Earth is a great Globe--How the Size of the Earth is
Measured--The Base Line--The Latitude found by the Elevation of the
Pole--A Degree of the Meridian--The Earth not a Sphere--The
Pendulum Experiment--Is the Motion of the Earth slow or
fast?--Coincidence of the Axis of Rotation and the Axis of
Figure--The Existence of Heat in the Earth--The Earth once in a
Soft Condition--Effects of Centrifugal Force--Comparison with the
Sun and Jupiter--The Protuberance of the Equator--The Weighing of
the Earth--Comparison between the Weight of the Earth and an equal
Globe of Water--Comparison of the Earth with a Leaden Globe--The
Pendulum--Use of the Pendulum in Measuring the Intensity of
Gravitation--The Principle of Isochronism--Shape of the Earth
measured by the Pendulum.
That the earth must be a round body is a truth immediately suggested by simple astronomical considerations. The sun is round, the moon is round, and telescopes show that the planets are round. No doubt comets are not round, but then a comet seems to be in no sense a solid body. We can see right through one of these frail objects, and its weight is too small for our methods of measurement to appreciate. If, then, all the solid bodies we can see are round globes, is it not likely that the earth is a globe also? But we have far more direct information than mere surmise.
There is no better way of actually seeing that the surface of the ocean is curved than by watching a distant ship on the open sea. When the ship is a long way off and is still receding, its hull will gradually disappear, while the masts will remain visible. On a fine summer's day we can often see the top of the funnel of a steamer appearing above the sea, while the body of the steamer is below. To see this best the eye should be brought as close as possible to the surface of the sea. If the sea were perfectly flat, there would be nothing to obscure the body of the vessel, and it would therefore be visible so long as the funnel remains visible. If the sea be really curved, the protuberant part intercepts the view of the hull, while the funnel is still to be seen.
We thus learn how the sea is curved at every part, and therefore it is natural to suppose that the earth is a sphere. When we make more careful measurements we find that the globe is not perfectly round. It is flattened to some extent at each of the poles. This may be easily illustrated by an indiarubber ball, which can be compressed on two opposite sides so as to bulge out at the centre. The earth is similarly flattened at the poles, and bulged out at the equator. The divergence of the earth from the truly globular form is, however, not very great, and would not be noticed without very careful measurements.
The determination of the size of the earth involves operations of no little delicacy. Very much skill and very much labour have been devoted to the work, and the dimensions of the earth are known with a high degree of accuracy, though perhaps not with all the precision that we may ultimately hope to attain. The scientific importance of an accurate measurement of the earth can hardly be over-estimated. The radius of the earth is itself the unit in which many other astronomical magnitudes are expressed. For example, when observations are made with the view of finding the distance of the moon, the observations, when discussed and reduced, tell us that the distance of the moon is equal to fifty-nine times the equatorial radius of the earth. If we want to find the distance of the moon in miles, we require to know the number of miles in the earth's radius.
A level part of the earth's surface having been chosen, a line a few miles long is measured. This is called the base, and as all the subsequent measures depend ultimately on the base, it is necessary that this measurement shall be made with scrupulous accuracy. To measure a line four or five miles long with such precision as to exclude any errors greater than a few inches demands the most minute precautions. We do not now enter upon a description of the operations that are necessary. It is a most laborious piece of work, and many ponderous volumes have been devoted to the discussion of the results. But when a few base lines have been obtained in different places on the earth's surface, the measuring rods are to be laid aside, and the subsequent task of the survey of the earth is to be conducted by the measurement of angles from one station to another and trigonometrical calculations based thereon. Starting from a base line a few miles long, distances of greater length are calculated, until at length stretches 100 miles long, or even more, can be accomplished. It is thus possible to find the length of a long line running due north and south.
So far the work has been merely that of the terrestrial surveyor. The distance thus ascertained is handed over to the astronomer to deduce from it the dimensions of the earth. The astronomer fixes his observatory at the northern end of the long line, and proceeds to determine his latitude by observation. There are various ways by which this can be accomplished. They will be found fully described in works on practical astronomy. We shall here only indicate in a very brief manner the principle on which such observations are to be made.
Everyone ought to be familiar with the Pole Star, which, though by no means the most brilliant, is probably the most important star in the whole heavens. In these latitudes we are accustomed to find the Pole Star at a considerable elevation, and there we can invariably find it, always in the same place in the northern sky. But suppose we start on a voyage to the southern hemisphere: as we approach the equator we find, night after night, the Pole Star coming closer to the horizon. At the equator it is on the horizon; while if we cross the line, we find on entering the southern hemisphere that this useful celestial body has become invisible. This is in itself sufficient to show us that the earth cannot be the flat surface that untutored experience
Comments (0)