readenglishbook.com » Science » The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗

Book online «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗». Author Sir Robert Stawell Ball



1 ... 55 56 57 58 59 60 61 62 63 ... 97
Go to page:
language almost touching, the great astronomer writes: "Wherefore if it should return according to our prediction about the year 1758, impartial posterity will not refuse to acknowledge that this was first discovered by an Englishman."

As the time drew near when this great event was expected, it awakened the liveliest interest among astronomers. The distinguished mathematician Clairaut undertook to compute anew, by the aid of improved methods, the effect which would be wrought on the comet by the attraction of the planets. His analysis of the perturbations was sufficient to show that the object would be kept back for 100 days by Saturn, and for 518 days by Jupiter. He therefore gave some additional exactness to the prediction of Halley, and finally concluded that this comet would reach the perihelion, or the point of its path nearest to the sun, about the middle of April, 1759. The sagacious astronomer (who, we must remember, lived long before the discovery of Uranus and of Neptune) further adds that as this body retreats so far, it may possibly be subject to influences of which we do not know, or to the disturbance even of some planet too remote to be ever perceived. He, accordingly, qualified his prediction with the statement that, owing to these unknown possibilities, his calculations might be a month wrong one way or the other. Clairaut made this memorable communication to the Academy of Sciences on the 14th of November, 1758. The attention of astronomers was immediately quickened to see whether the visitor, who last appeared seventy-six years previously, was about to return. Night after night the heavens were scanned. On Christmas Day in 1758 the comet was first detected, and it passed closest to the sun about midnight on the 12th of March, just a month earlier than the time announced by Clairaut, but still within the limits of error which he had assigned as being possible.

The verification of this prediction was a further confirmation of the theory of gravitation. Since then, Halley's comet has returned once again, in 1835, in circumstances somewhat similar to those just narrated. Further historical research has also succeeded in identifying Halley's comet with numerous memorable apparitions of comets in former times. It has even been shown that a splendid object, which appeared eleven years before the commencement of the Christian era, was merely Halley's comet in one of its former returns. Among the most celebrated visits of this body was that of 1066, when the apparition attracted universal attention. A picture of the comet on this occasion forms a quaint feature in the Bayeux Tapestry. The next return of Halley's comet is expected about the year 1910.

There are now several comets known which revolve in elliptic paths, and are, accordingly, entitled to be termed periodic. These objects are chiefly telescopic, and are thus in strong contrast to the splendid comet of Halley. Most of the other periodic comets have periods much shorter than that of Halley. Of these objects, by far the most celebrated is that known as Encke's comet, which merits our careful attention.

The object to which we refer has had a striking career during which it has provided many illustrations of the law of gravitation. We are not here concerned with the prosaic routine of a mere planetary orbit. A planet is mainly subordinated to the compelling sway of the sun's gravitation. It is also to some slight extent affected by the attractions which it experiences from the other planets. Mathematicians have long been accustomed to anticipate the movements of these globes by actual calculation. They know how the place of the planet is approximately decided by the sun's attraction, and they can discriminate the different adjustments which that place is to receive in consequence of the disturbances produced by the other planets. The capabilities of the planets for producing disturbance are greatly increased when the disturbed body follows the eccentric path of a comet. It is frequently found that the path of such a body comes very near the track of a planet, so that the comet may actually sweep by the planet itself, even if the two bodies do not actually run into collision. On such an occasion the disturbing effect is enormously augmented, and we therefore turn to the comets when we desire to illustrate the theory of planetary perturbations by some striking example.

Having decided to choose a comet, the next question is, _What_ comet? There cannot here be much room for hesitation. Those splendid comets which appear so capriciously may be at once excluded. They are visitors apparently coming for the first time, and retreating without any distinct promise that mankind shall ever see them again. A comet of this kind moves in a parabolic path, sweeps once around the sun, and thence retreats into the space whence it came. We cannot study the effect of perturbations on a comet completely until it has been watched during successive returns to the sun. Our choice is thus limited to the comparatively small class of objects known as periodic comets; and, from a survey of the entire group, we select the most suitable to our purpose. It is the object generally known as Encke's comet, for, though Encke was not the discoverer, yet it is to his calculations that the comet owes its fame. This body is rendered more suitable for our purpose by the researches to which it has recently given rise.

In the year 1818 a comet was discovered by the painstaking astronomer Pons at Marseilles. We are not to imagine that this body produced a splendid spectacle. It was a small telescopic object, not unlike one of those dim nebulae which are scattered in thousands over the heavens. The comet is, however, readily distinguished from a nebula by its movement relatively to the stars, while the nebula remains at rest for centuries. The position of this comet was ascertained by its discoverer, as well as by other astronomers. Encke found from the observations that the comet returned to the sun once in every three years and a few months. This was a startling announcement. At that time no other comet of short period had been detected, so that this new addition to the solar system awakened the liveliest interest. The question was immediately raised as to whether this comet, which revolved so frequently, might not have been observed during previous returns. The historical records of the apparitions of comets are counted by hundreds, and how among this host are we to select those objects which were identical with the comet discovered by Pons?

We may at once relinquish any hope of identification from drawings of the object, but, fortunately, there is one feature of a comet on which we can seize, and which no fluctuations of the actual structure can modify or disguise. The path in which the body travels through space is independent of the bodily changes in its structure. The shape of that path and its position depend entirely upon those other bodies of the solar system which are specially involved in the theory of Encke's comet. In Fig. 70 we show the orbits of three of the planets. They have been chosen with such proportions as shall make the innermost represent the orbit of Mercury; the next is the orbit of the earth, while the outermost is the orbit of Jupiter. Besides these three we perceive in the figure a much more elliptical path, representing the orbit of Encke's comet, projected down on the plane of the earth's motion. The sun is situated at the focus of the ellipse. The comet is constrained to revolve in this curve by the attraction of the sun, and it requires a little more than three years to accomplish a complete revolution. It passes close to the sun at perihelion, at a point inside the path of Mercury, while at its greatest distance it approaches the path of Jupiter. This elliptic orbit is mainly determined by the attraction of the sun. Whether the comet weighed an ounce, a ton, a thousand tons, or a million tons, whether it was a few miles, or many thousands of miles in diameter, the orbit would still be the same. It is by the shape of this ellipse, by its actual size, and by the position in which it lies, that we identify the comet. It had been observed in 1786, 1795, and 1805, but on these occasions it had not been noticed that the comet's path deviated from the parabola.

Encke's comet is usually so faint that even the most powerful telescope in the world would not show a trace of it. After one of its periodical visits, the body withdraws until it recedes to the outermost part of its path, then it will turn, and again approach the sun. It would seem that it becomes invigorated by the sun's rays, and commences to dilate under their genial influence. While moving in this part of its path the comet lessens its distance from the earth. It daily increases in splendour, until at length, partly by the intrinsic increase in brightness and partly by the decrease in distance from the earth, it comes within the range of our telescopes. We can generally anticipate when this will occur, and we can tell to what point of the heavens the telescope is to be pointed so as to discern the comet at its next return to perihelion. The comet cannot elude the grasp of the mathematician. He can tell when and where the comet is to be found, but no one can say what it will be like.

Were all the other bodies of the system removed, then the path of Encke's comet must be for ever performed in the same ellipse and with absolute regularity. The chief interest for our present purpose lies not in the regularity of its path, but in the _irregularities_ introduced into that path by the presence of the other bodies of the solar system. Let us, for instance, follow the progress of the comet through its perihelion passage, in which the track lies near that of the planet Mercury. It will usually happen that Mercury is situated in a distant part of its path at the moment the comet is passing, and the influence of the planet will then be comparatively small. It may, however, sometimes happen that the planet and the comet come close together. One of the most interesting instances of a close approach to Mercury took place on the 22nd November, 1848. On that day the comet and the planet were only separated by an interval of about one-thirtieth of the earth's distance from the sun, _i.e._ about 3,000,000 miles. On several other occasions the distance between Encke's comet and Mercury has been less than 10,000,000 miles--an amount of trifling import in comparison with the dimensions of our system. Approaches so close as this are fraught with serious consequences to the movements of the comet. Mercury, though a small body, is still sufficiently massive. It always attracts the comet, but the efficacy of that attraction is enormously enhanced when the comet in its wanderings comes near the planet. The effect of this attraction is to force the comet to swerve from its path, and to impress certain changes upon its velocity. As the comet recedes, the disturbing influence of Mercury rapidly abates, and ere long becomes insensible. But time cannot efface from the orbit of the comet the effect which the disturbance of Mercury has actually accomplished. The disturbed orbit is different from the undisturbed ellipse which the comet would have occupied had the influence of the sun alone determined its shape. We are able to calculate the movements of the comet as determined by the sun. We can also calculate the effects arising from the disturbance produced by Mercury, provided we know the mass of the latter.

Though Mercury
1 ... 55 56 57 58 59 60 61 62 63 ... 97
Go to page:

Free e-book «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment