readenglishbook.com » Science » The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗

Book online «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗». Author Sir Robert Stawell Ball



1 ... 56 57 58 59 60 61 62 63 64 ... 97
Go to page:
is one of the smallest of the planets, it is perhaps the most troublesome to the astronomer. It lies so close to the sun that it is seen but seldom in comparison with the other great planets. Its orbit is very eccentric, and it experiences disturbances by the attraction of other bodies in a way not yet fully understood. A special difficulty has also been found in the attempt to place Mercury in the weighing scales. We can weigh the whole earth, we can weigh the sun, the moon, and even Jupiter and other planets, but Mercury presents difficulties of a peculiar character. Le Verrier, however, succeeded in devising a method of weighing it. He demonstrated that our earth is attracted by this planet, and he showed how the amount of attraction may be disclosed by observations of the sun, so that, from an examination of the observations, he made an approximate determination of the mass of Mercury. Le Verrier's result indicated that the weight of the planet was about the fourteenth part of the weight of the earth. In other words, if our earth was placed in a balance, and fourteen globes, each equal to Mercury, were laid in the other, the scales would hang evenly. It was necessary that this result should be received with great caution. It depended upon a delicate interpretation of somewhat precarious measurements. It could only be regarded as of provisional value, to be discarded when a better one should be obtained.

The approach of Encke's comet to Mercury, and the elaborate investigations of Von Asten and Backlund, in which the observations of the body were discussed, have thrown much light on the subject; but, owing to a peculiarity in the motion of this comet, which we shall presently mention, the difficulties of this investigation are enormous. Backlund's latest result is, that the sun is 9,700,000 times as heavy as Mercury, and he considers that this is worthy of great confidence. There is a considerable difference between this result (which makes the earth about thirty times as heavy as Mercury) and that of Le Verrier; and, on the other hand, Haerdtl has, from the motion of Winnecke's periodic comet, found a value of the mass of Mercury which is not very different from Le Verrier's. Mercury is, however, the only planet about the mass of which there is any serious uncertainty, and this must not make us doubt the accuracy of this delicate weighing-machine. Look at the orbit of Jupiter, to which Encke's comet approaches so nearly when it retreats from the sun. It will sometimes happen that Jupiter and the comet are in close proximity, and then the mighty planet seriously disturbs the pliable orbit of the comet. The path of the latter bears unmistakable traces of the Jupiter perturbations, as well as of the Mercury perturbations. It might seem a hopeless task to discriminate between the influences of the two planets, overshadowed as they both are by the supreme control of the sun, but contrivances of mathematical analysis are adequate to deal with the problem. They point out how much is due to Mercury, how much is due to Jupiter; and the wanderings of Encke's comet can thus be made to disclose the mass of Jupiter as well as that of Mercury. Here we have a means of testing the precision of our weighing appliances. The mass of Jupiter can be measured by his moons, in the way mentioned in a previous chapter. As the satellites revolve round and round the planet, they furnish a method of measuring his weight by the rapidity of their motion. They tell us that if the sun were placed in one scale of the celestial balance, it would take 1,047 bodies equal to Jupiter in the other to weigh him down. Hardly a trace of uncertainty clings to this determination, and it is therefore of great interest to test the theory of Encke's comet by seeing whether it gives an accordant result. The comparison has been made by Von Asten. Encke's comet tells us that the sun is 1,050 times as heavy as Jupiter; so the results are practically identical, and the accuracy of the indications of the comet are confirmed. But the calculation of the perturbations of Encke's comet is so extremely intricate that Asten's result is not of great value. From the motion of Winnecke's periodic comet, Haerdtl has found that the sun is 1,047.17 times as heavy as Jupiter, in perfect accordance with the best results derived from the attraction of Jupiter on his satellites and the other planets.

We have hitherto discussed the adventures of Encke's comet in cases where they throw light on questions otherwise more or less known to us. We now approach a celebrated problem, on which Encke's comet is our only authority. Every 1,210 days that comet revolves completely around its orbit, and returns again to the neighbourhood of the sun. The movements of the comet are, however, somewhat irregular. We have already explained how perturbations arise from Mercury and from Jupiter. Further disturbances arise from the attraction of the earth and of the other remaining planets; but all these can be allowed for, and then we are entitled to expect, if the law of gravitation be universally true, that the comet shall obey the calculations of mathematics. Encke's comet has not justified this anticipation; at each revolution the period is getting steadily shorter! Each time the comet comes back to perihelion in two and a half hours less than on the former occasion. Two and a half hours is, no doubt, a small period in comparison with that of an entire revolution; but in the region of its path visible to us the comet is moving so quickly that its motion in two and a half hours is considerable. This irregularity cannot be overlooked, inasmuch as it has been confirmed by the returns during about twenty revolutions. It has sometimes been thought that the discrepancies might be attributed to some planetary perturbations omitted or not fully accounted for. The masterly analysis of Von Asten and Backlund has, however, disposed of this explanation. They have minutely studied the observations down to 1891, but only to confirm the reality of this diminution in the periodic time of Encke's comet.

An explanation of these irregularities was suggested by Encke long ago. Let us briefly attempt to describe this memorable hypothesis. When we say that a body will move in an elliptic path around the sun in virtue of gravitation, it is always assumed that the body has a free course through space. It is assumed that there is no friction, no air, or other source of disturbance. But suppose that this assumption should be incorrect; suppose that there really is some medium pervading space which offers resistance to the comet in the same way as the air impedes the flight of a rifle bullet, what effect ought such a medium to produce? This is the idea which Encke put forward. Even if the greater part of space be utterly void, so that the path of the filmy and almost spiritual comet is incapable of feeling resistance, yet in the neighbourhood of the sun it was supposed that there might be some medium of excessive tenuity capable of affecting so light a body. It can be demonstrated that a resisting medium such as we have supposed would lessen the size of the comet's path, and diminish the periodic time. This hypothesis has, however, now been abandoned. It has always appeared strange that no other comet showed the least sign of being retarded by the assumed resisting medium. But the labours of Backlund have now proved beyond a doubt that the acceleration of the motion of Encke's comet is not a constant one, and cannot be accounted for by assuming a resisting medium distributed round the sun, no matter how we imagine this medium to be constituted with regard to density at different distances from the sun. Backlund found that the acceleration was fairly constant from 1819 to 1858; it commenced to decrease between 1858 and 1862, and continued to diminish till some time between 1868 and 1871, since which time it has remained fairly constant. He considers that the acceleration can only be produced by the comet encountering periodically a swarm of meteors, and if we could only observe the comet during its motion through the greater part of its orbit we should be able to point out the locality where this encounter takes place.

We have selected the comets of Halley and of Encke as illustrations of the class of periodic comets, of which, indeed, they are the most remarkable members. Another very remarkable periodic comet is that of Biela, of which we shall have more to say in the next chapter. Of the much more numerous class of non-periodic comets, examples in abundance may be cited. We shall mention a few which have appeared during the present century. There is first the splendid comet of 1843, which appeared suddenly in February of that year, and was so brilliant that it could be seen during full daylight. This comet followed a path which could not be certainly distinguished from a parabola, though there is no doubt that it might have been a very elongated ellipse. It is frequently impossible to decide a question of this kind, during the brief opportunities available for finding the place of the comet. We can only see the object during a very small arc of its orbit, and even then it is not a very well-defined point which admits of being measured with the precision attainable in observations of a star or a planet. This comet of 1843 is, however, especially remarkable for the rapidity with which it moved, and for the close approach which it made to the sun. The heat to which it was exposed during its passage around the sun must have been enormously greater than the heat which can be raised in our mightiest furnaces. If the materials had been agate or cornelian, or the most infusible substances known on the earth, they would have been fused and driven into vapour by the intensity of the sun's rays.

The great comet of 1858 was one of the celestial spectacles of modern times. It was first observed on June 2nd of that year by Donati, whose name the comet has subsequently borne; it was then merely a faint nebulous spot, and for about three months it pursued its way across the heavens without giving any indications of the splendour which it was so soon to attain. The comet had hardly become visible to the unaided eye at the end of August, and was then furnished with only a very small tail, but as it gradually drew nearer and nearer to the sun in September, it soon became invested with splendour. A tail of majestic proportions was quickly developed, and by the middle of October, when the maximum brightness was attained, its length extended over an arc of forty degrees. The beauty and interest of this comet were greatly enhanced by its favourable position in the sky at a season when the nights were sufficiently dark.

On the 22nd May, 1881, Mr. Tebbutt, of Windsor, in New South Wales, discovered a comet which speedily developed into one of the most interesting celestial objects seen by this generation. About the 22nd of June it became visible from these latitudes in the northern sky at midnight. Gradually it ascended higher and higher until it passed around the pole. The nucleus of the comet was as bright as a star of the first magnitude, and its tail was about 20 deg. long. On the 2nd of September it ceased to be visible to the unaided eye, but remained visible in telescopes until the following February. This was the first comet which was successfully photographed, and it may be remarked that
1 ... 56 57 58 59 60 61 62 63 64 ... 97
Go to page:

Free e-book «The Story of the Heavens, Sir Robert Stawell Ball [snow like ashes series TXT] 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment